*LeetCode-Binary Tree Preorder Traversal

本文深入探讨了二叉树的遍历方法,包括先序、中序和后序遍历的不同实现方式,如递归与非递归方法,并介绍了Morris遍历这一高效的空间优化技巧。

preorder,inorder, postorder都属于dfs

“第一种是以图的深度优先搜索为原型的遍历, 可以是中序, 先序和后序三种方式, 不过结点遍历的方式是相同的, 只是访问的时间点不同而已, 对应于Binary Tree Inorder Traversal, Binary Tree Preorder TraversalBinary Tree Postorder Traversal这三道题目。 
在这种类型中, 递归的实现方式是非常简单的, 只需要递归左右结点, 直到结点为空作为结束条件就可以, 哪种序就取决于你访问结点的时间。 
不过一般这不能满足面试官的要求, 可能会接着问能不能用非递归实现一下, 这个说起来比较简单, 其实就是用一个栈手动模拟递归的过程, Binary Tree Inorder TraversalBinary Tree Preorder Traversal比较简单, 用一个栈来保存前驱的分支结点(相当于图的深度搜索的栈), 然后用一个结点来记录当前结点就可以了。 而Binary Tree Postorder Traversal则比较复杂一些, 保存栈和结点之后还得根据情况来判断当前应该走的方向(往左, 往右或者回溯)。 这里就不列举代码细节, 有兴趣的朋友可以看看具体题目的分析, 会更详细一些。 
有时候非递归还是不能满足面试官, 还会问一问, 上面的做法时间和空间复杂度是多少。 我们知道, 正常遍历时间复杂度是O(n), 而空间复杂度是则是递归栈(或者自己维护的栈)的大小, 也就是O(logn)。 好了, 他会问能不能够在常量空间内解决树的遍历问题呢? 确实还真可以, 这里就要介绍Morris Traversal的方法。 Morris遍历方法用了线索二叉树,这个方法不需要为每个节点额外分配指针指向其前驱和后继结点,而是利用叶子节点中的右空指针指向中序遍历下的后继节点就可以了。 这样就节省了需要用栈来记录前驱或者后继结点的额外空间, 所以可以达到O(1)的空间复杂度。 不过这种方法有一个问题就是会暂时性的改动树的结构, 这在程序设计中并不是很好的习惯, 这些在面试中都可以和面试官讨论, 一般来说问到这里不会需要进行Morris遍历方法的代码实现了, 只需要知道这种方法和他的主要优劣势就可以了, 有兴趣知道实现的朋友可以看看具体题目的实现哈。”


递归实现:最一开始helper里面又多写了两个多余的判断 就是在进入左右子之前 又判断了左右子是否为空 不用啊!!helper第一句就判断了!!

public class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> list = new ArrayList<Integer>();
        helper (list, root);
        return list;
    }
    public void helper (List<Integer> list,TreeNode node){
        if ( node == null )
            return;
        list.add(node.val);
        helper(list, node.left);
        helper(list, node.right);
        return;
    }
}
非递归:才是考察重点吧,while的条件很重要,stack不为空 或者node不是null 只要符合一个就可以了,因为在root的左边全访问过之后stack会空。

其中的else内容考虑了很久 就是要先pop出一个node 然后让他等于他的right


public class Solution {
    public List<Integer> preorderTraversal(TreeNode root) {
        List<Integer> list = new ArrayList<Integer>();
        Stack<TreeNode> stack = new Stack<TreeNode>();
        if ( root == null)
            return list;
        while( !stack.isEmpty() || root!=null ){
            if ( root!= null ){
                list.add(root.val);
                stack.push(root);
                root = root.left;
            }
            else{
                root = stack.pop();
                root = root.right;
            }
            
        }
        return list;
    }

}



<think>我们将把给定的Java代码转换为Python代码。原Java代码实现了二叉树的前序遍历(递归方式)。 前序遍历的顺序是:根节点 -> 子树 -> 右子树。 在Python中,我们同样可以定义一个TreeNode类来表示二叉树的节点,然后实现递归的前序遍历。 注意:在Python中,我们通常使用列表(list)来存储遍历结果。 步骤: 1. 定义TreeNode类(如果题目中已经定义,则不需要重复定义,这里为了完整起见,我们给出定义)。 2. 实现一个Solution类,其中包含preorderTraversal方法,该方法接收一个根节点,返回一个整数列表。 3. 在preorderTraversal方法中,我们初始化一个空列表,然后调用递归辅助函数进行遍历。 4. 递归辅助函数preorder将节点和结果列表作为参数,按照前序遍历的顺序将节点值添加到列表中。 考虑到LeetCode的环境,我们假设TreeNode类已经定义好。因此,我们只需要写出Solution类的代码。 下面是转换后的Python代码:</think>### 二叉树前序遍历的 Python 实现 以下是 Java 代码的等效 Python 实现,使用递归方法完成二叉树的前序遍历: ```python from typing import List, Optional # 定义二叉树节点类 class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def preorderTraversal(self, root: Optional[TreeNode]) -> List[int]: result = [] # 存储遍历结果的列表 self.preorder(root, result) # 调用递归方法 return result def preorder(self, node: Optional[TreeNode], result: List[int]) -> None: # 递归终止条件:遇到空节点 if node is None: return # 前序遍历步骤: # 1. 访问当前节点(添加到结果列表) result.append(node.val) # 2. 递归遍历子树 self.preorder(node.left, result) # 3. 递归遍历右子树 self.preorder(node.right, result) ``` ### 代码解释: 1. **TreeNode 类**- Python 使用类定义二叉树节点 - `__init__` 构造函数初始化节点值、子节点和右子节点 - 使用 `Optional` 类型表示节点可以为 None 2. **Solution 类**- `preorderTraversal` 方法: - 初始化空列表 `result` 存储结果 - 调用递归辅助方法 `preorder` - 返回最终结果列表 - `preorder` 递归辅助方法: - **基线条件**:当节点为 None 时直接返回 - **递归过程**: 1. 访问当前节点(添加到结果列表) 2. 递归遍历子树 3. 递归遍历右子树 3. **前序遍历顺序**- 根节点 → 子树 → 右子树 - 示例:对于二叉树 `[1,null,2,3]`: ``` 1 \ 2 / 3 ``` 输出结果为 `[1,2,3]` ### 使用示例: ```python # 构建示例二叉树: # 1 # \ # 2 # / # 3 # 创建节点 n1 = TreeNode(1) n2 = TreeNode(2) n3 = TreeNode(3) # 构建树结构 n1.right = n2 n2.left = n3 # 执行遍历 solution = Solution() print(solution.preorderTraversal(n1)) # 输出: [1, 2, 3] ``` ### 复杂度分析: - **时间复杂度**:O(n),每个节点恰好访问一次 - **空间复杂度**:O(h),其中 h 是二叉树的高度(递归调用栈空间) - 最坏情况(树退化为链表):O(n) - 平衡二叉树情况:O(log n)
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值