
arXiv-2016
文章目录
1 Background and Motivation
用卷积直接回归单应性矩阵(transformation estimation,homography estimation),8个自由度
The homography is an essential part of monocular SLAM systems in scenarios such as:
- Rotation only movements
- Planar scenes
- Scenes in which objects are very far from the viewer
2 Related Work
无
3 Advantages / Contributions
利用卷积神经网络学四个点的偏移来进行 Homography Estimation
4 Method
(1)The 4-point homography parameterization

单应性矩阵把图 ( u , v ) (u,v) (u,v) 映射成了 ( u ′ , v ′ ) (u',v') (u′,v′)
H11 H12 H21 H22 与旋转有关,H13 H23 和平移有关
Balancing the rotational and translational terms as part of an optimization problem is difficult
单应性矩阵中 9个参数相互组合有实际意义,没有完全解耦干净, 9 个参数共 8 个自由度,作者直接改学图 ( u , v ) (u,v) (u,v) 映射成了 ( u ′ , v ′ ) (u',v') (u


最低0.47元/天 解锁文章
4165

被折叠的 条评论
为什么被折叠?



