单向链表
节点类、链表类基本方法
开始刷题前先罗列一下单向链表的近40个基本属性和方法,大多数出自《触“类”旁通5|链表类才是单链表的主咖》一篇并且已是验证过的。仅用于方便创建和展示单链表,碰到实际问题时尽可能只用到类的初始化方法,而不是直接调用初始化之外的其他方法来解决问题。
class Node():
def __init__(self, value=None, Next=None):
self.val = value
self.next = Next
if (type(self.next)==Node and self.next.val==None
or type(self.next)!=Node and self.next!=None):
self.next = None
def __repr__(self):
return f'{self.val}->{self.next}'
@property
def values(self):
ret,ptr = [],self
while ptr is not None:
ret.append(ptr.val)
ptr = ptr.next
return ret
def build(*data, split=True):
'''把数据转换成节点链表'''
lst,ret = [],Node()
for val in data:
if type(val) is str:
if not split:
lst.append(val)
continue
if str=='':
continue
try:
num = int(val)
lst.extend([int(_) for _ in val])
except:
lst.extend([_ for _ in val])
elif hasattr(val,'__iter__'):
lst.extend([_ for _ in val])
elif type(val) is Node:
if val is not None:
lst.extend(val.values)
elif type(val) is List:
if val.head is not None:
lst.extend(val.head.values)
else:
lst.append(val)
ret = Node()
for i in lst[::-1]:
ret = Node(i, ret)
return ret
class List():
def __init__(self, *node):
self.head = Node.build(*node)
def __repr__(self):
return f'[{self.head}]'
def __len__(self):
return self.size()
@property
def length(self):
return self.size()
def is_empty(self):
if self.head.val==None:
return True
else:
return False
def size(self):
ret,ptr = 0,self.head
if ptr.val==None: return 0
while ptr:
ptr = ptr.next
ret += 1
return ret
def copy(self):
return List(self.head)
@property
def tail(self):
ptr = self.head
while ptr.next:
ptr = ptr.next
return ptr
@property
def values(self):
if self.is_empty():
return []
ret,ptr = [],self.head
while ptr:
ret.append(ptr.val)
ptr = ptr.next
return ret
@property
def items(self):
ptr = self.head
while ptr:
yield ptr.val
ptr = ptr.next
def NthNode(self, n=1):
ptr = self.head
for _ in range(n-1):
if ptr.next is None:
raise ValueError('n large then length of List')
ptr = ptr.next
return ptr
def NthNodefromEnd(self, n=1):
fast = slow = self.head
for _ in range(n):
if fast is None:
raise ValueError('n large then length of List')
fast = fast.next
while fast:
fast,slow = fast.next,slow.next
return slow
def __contains__(self, data):
if self.is_empty():
return False
if isinstance(data,List):
data = data.head
if isinstance(data,Node):
count = self.find(data.val)+1
if count==0: return False
ptr1,ptr2 = self.head,data
for _ in range(1,count):
ptr1 = ptr1.next
if ptr1 is None: return False
while ptr2:
if ptr1 is None or ptr1.val!=ptr2.val:
return False
ptr1,ptr2 = ptr1.next,ptr2.next
return True
else:
return bool(1 + self.find(data))
def __eq__(self, data):
if not isinstance(data,List):
return False
if data.is_empty():
if self.is_empty(): return True
else: return False
#return data in self and self in data
ptr1,ptr2 = self.head,data.head
while ptr1:
if ptr1.val!=ptr2.val: return False
ptr1,ptr2 = ptr1.next,ptr2.next
return True
def push(self, data):
if not isinstance(data, List):
data = List(data)
if self.is_empty():
self.head = data.head
else:
ret = data.head
ret.next,self.head = self.head,ret
return self
def append(self, data):
if not isinstance(data, List):
data = List(data)
if self.is_empty():
self.head = data.head
else:
ptr = self.head
while ptr.next:
ptr = ptr.next
ptr.next = data.head
return self
def cat(self, *data):
for val in data:
self.append(val)
return self
def __add__(self, *data):
self.cat(*data)
return self
def __radd__(self, *data):
self.add(*data)
return self
def __getitem__(self, item):
return self.values[item]
def __setitem__(self, idx, value):
length = self.size()
if idx<0: idx += length
if self.is_empty() or idx+1>length or idx<0:
raise IndexError('List() index out of range.')
if isinstance(value,Node) or isinstance(value,List):
raise TypeError('value type Error')
ptr = self.head
for i in range(idx):
ptr = ptr.next
ptr.val = value
def __delitem__(self, index):
length = self.size()
if index<0: index += length
if self.is_empty() or index+1>length or index<0:
raise IndexError('List() index out of range.')
ptr = self.head
if index>0:
for i in range(index-1):
ptr = ptr.next
ptr.next = ptr.next.next
else:
if ptr.next is None: self.head = Node()
else: self.head = self.head.next
return self
delete = __delitem__
def nlargest(self):
if self.is_empty():
return None
ptr,ret = self.head,self.head.val
while ptr:
ret = max(ret, ptr.val)
ptr = ptr.next
return ret
def nsmallest(self):
if self.is_empty():
return None
ptr,ret = self.head,self.head.val
while ptr:
ret = min(ret, ptr.val)
ptr = ptr.next
return ret
def find(self, num):
if self.is_empty():
return -1
ptr,ret = self.head,-1
while ptr:
ret += 1
if ptr.val == num: break
ptr = ptr.next
else:
ret = -1
return ret
def index(self, num):
error = lambda i:ValueError(f'{i} is not in List')
if self.is_empty():
raise error(num)
ptr,ret = self.head,-1
while ptr:
ret += 1
if ptr.val == num: break
ptr = ptr.next
else:
raise error(num)
return ret
def sort(self):
length = self.size()
for i in range(1, length):
ptr = self.head
for j in range(length - i):
if ptr.val>ptr.next.val:
ptr.val,ptr.next.val = ptr.next.val,ptr.val
ptr = ptr.next
return self
def sorted(self):
if self.size()<2:
return self
return List(self.head).sort()
def reverse(self):
ptr,ret = self.head,Node()
while ptr:
ret,ptr = Node(ptr.val,ret),ptr.next
self.head = ret
return self
def __reversed__(self):
ret = List(self)
return ret.reverse()
def rotate(self, k):
'''链表旋转|k|个节点,正数向左负数向右'''
if k==0: return self
dbouble,size = Node(self.head.val),0
ptr,ptr1 = self.head,dbouble
while ptr.next:
ptr1.next = Node(ptr.next.val)
ptr,ptr1 = ptr.next,ptr1.next
ptr = self.head
while ptr:
size += 1
ptr1.next = Node(ptr.val)
ptr,ptr1 = ptr.next,ptr1.next
k %= size
if k==0: return self
ret = Node()
ptr,ptr1 = dbouble,ret
for i in range(k+size):
if i>=k:
ptr1.next = Node(ptr.val)
ptr1 = ptr1.next
ptr = ptr.next
return List(ret.next)
def __lshift__(self, n):
self.head = self.rotate(n).head
return self
def __rshift__(self, n):
self.head = self.rotate(-n).head
return self
后补的几个方法:
def insert(self,index,value):
if index==0:
self.push(value)
return self
length = self.size()
if index==length:
self.append(value)
return self
elif index>length or index<0:
raise ValueError('range: 0 <= index <= length of List')
ptr,ret = self.head,Node(value)
for _ in range(1,index):
ptr = ptr.next
ret.next,ptr.next = ptr.next,ret
return self
def pophead(self):
if not self:
raise IndexError('pophead from empty Node')
ret,self.head = self.head.val,self.head.next or Node()
return ret
def poptail(self):
if not self:
raise IndexError('poptail from empty Node')
ret = Node()
ptr,ptr1 = self.head,ret
while ptr.next:
ptr1.next = Node(ptr.val)
ptr,ptr1 = ptr.next,ptr1.next
tail,self.head = ptr.val,ret.next or Node()
return tail
leetcode单链表专场
其中前11题在《触“类”旁通2》和《触“类”旁通3》中用节点类练习过,本篇将用链表类重新写过。
1. 整数的链表加法
Add Two Numbers (#2)
给定两个逆序表达整数各位数字的链表,求出两数之和的逆序表达的链表。
示例
输入: (2 -> 4 -> 3) + (5 -> 6 -> 4)
输出: 7->0->8
解释: 342 + 465 = 807输入: (1->) + (9 -> 9 -> 9)
输出: 0->0->0->1
解释: 1 + 999 = 1000
def addition(self, nodeList):
if not (self and nodeList): return self or nodeList
ret,carry = List(),0
ptr,ptr1,ptr2 = ret.head,self.head,nodeList.head
while ptr1 and ptr2:
Sum = ptr1.val+ptr2.val+carry
carry = 1 if Sum>9 else 0
ptr.next = Node(Sum%10)
ptr,ptr1,ptr2 = ptr.next,ptr1.next,ptr2.next
ptr1 = ptr1 or ptr2
while ptr1:
Sum = ptr1.val+carry
carry = 1 if Sum>9 else 0
ptr.next = Node(Sum%10)
ptr,ptr1 = ptr.next,ptr1.next
if carry: ptr.next = Node(1)
return List(ret.head.next)
>>> a = List(2,4,3)
>>> b = List(5,6,4)
>>> a.addition(b)
[7->0->8->None]
>>> b.addition(a)
[7->0->8->None]
>>> List.addition(a,b)
[7->0->8->None]
>>> a
[2->4->3->None]
>>> b
[5->6->4->None]
>>>
>>> a = List(1)
>>> b = List(9,9,9)
>>> List.addition(a,b)
[0->0->0->1->None]
>>> List.addition(b,a)
[0->0->0->1->None]
>>> a,b
([1->None], [9->9->9->None])
>>>
方法二:递归法
def Add2Nums(self, node, carry=0):
if isinstance(self,List): self = List(self).head
if isinstance(node,List): node = List(node).head
if not (self or node): return Node(1) if carry else None
self,node = self or Node(0), node or Node(0)
Sum = self.val + node.val + carry
self.val,self.next = Sum%10,List.Add2Nums(self.next,node.next,int(Sum>9))
return self
>>> list1 = List(2,4,3); list2 = List(5,6,4)
>>> list1.Add2Nums(list2)
7->0->8->None
>>> list2.Add2Nums(list1)
7->0->8->None>>> list1 = List(9,9,9); list2 = List(1)
>>> list1.Add2Nums(list2)
0->0->0->1->None
>>> list2.Add2Nums(list1)
0->0->0->1->None
>>>
2. 删除倒数第N个节点
Remove Nth Node From End of List (#19)
给定链表,删除其倒数第n个节点,返回它的头指针。
示例
输入: 1->2->3->4->5, and n = 2.
输出: 1->2->3->5.
def removeNthEnd(self, n):
head,size = self.head,0
while head:
size += 1
head = head.next
head = self.head
if n>size or n<1:
raise ValueError('n range out of [1,self.size]')
if size==n:
self.head = head.next if n!=1 else Node()
else:
for i in range(1,size-n): head = head.next
head.next = head.next.next
return self
>>> list1 = List(range(1,6))
>>> list1.removeNthEnd(2)
[1->2->3->5->None]
>>> list1.removeNthEnd(1)
[1->2->3->None]
>>> list1.removeNthEnd(3)
[2->3->None]
>>> list1.removeNthEnd(2)
[3->None]
>>> list1.removeNthEnd(1)
[None->None]
>>>
方法二:定位倒数第n个位置时,先用快指针从头向后移动n个位置,再用慢指针从头开始和快指针从n位置同时向后反复步进1个位置;当快指针达到尾部时慢指针刚好到达倒数第n的位置。
def delNthNodefromEnd(self, n=1):
fast,ret = self.head,Node()
for _ in range(n):
if fast is None:
raise ValueError('n large then length of List')
fast = fast.next
slow,ptr = self.head,ret
while fast:
ptr.next = Node(slow.val)
fast,slow,ptr = fast.next,slow.next,ptr.next
ptr.next = slow.next
return List(ret.next)
>>> list1 = List(1,2,3,4,5)
>>> for i in range(1,6):
list1.delNthNodefromEnd(i)
[1->2->3->4->None]
[1->2->3->5->None]
[1->2->4->5->None]
[1->3->4->5->None]
[2->3->4->5->None]
直接调用已定义的基本方法.delete()也能完成任务:
>>> list1 = List(range(1,6))
>>> n = 2
>>> del list1[-n]
>>> list1
[1->2->3->5->None]
>>> list1 = List(range(1,6))
>>> n = 2
>>> list1.delete(-n)
[1->2->3->5->None]
>>>
3. 合并有序链表
Merge Two Sorted Lists (#21)
给定两个有序链表(升序),合并为一个新的有序链表并返回。
示例
输入:1->2>4->8
1->3->3->5->5
输出:1->1->2->3->3->4->5->5->8输入:0->2>4->8
1->3->5->7->9
输出:0->1->2->3->4->5->6->7->8->9
def merge(self, nodeList):
'''合并两个有序链表'''
if not self: return nodeList
ret = List()
ptr,ptr1,ptr2 = ret.head,self.head,nodeList.head
while ptr1 and ptr2:
if ptr1.val < ptr2.val:
ptr.next = Node(ptr1.val)
ptr1 = ptr1.next
else:
ptr.next = Node(ptr2.val)
ptr2 = ptr2.next
ptr = ptr.next
ptr.next = ptr1 or ptr2
return List(ret.head.next)
>>> list1 = List(1,2,4,8)
>>> list2 = List(1,3,3,5,5)
>>> list1.merge(list2)
[1->1->2->3->3->4->5->5->8->None]
>>> list1
[1->2->4->8->None]
>>> list2
[1->3->3->5->5->None]
>>> list1 = List(2,4,6,8)
>>> list2 = List(1,3,5,7,9)
>>> list2.merge(list1)
[1->2->3->4->5->6->7->8->9->None]
>>> list1,list2
([2->4->6->8->None], [1->3->5->7->9->None])>>> List.merge(list1,list2)
[1->2->3->4->5->6->7->8->9->None]
>>>
方法二:递归法
def mergeNodes(self,node):
if isinstance(self,List): self = List(self).head
if isinstance(node,List): node = List(node).head
if not (self and node): return self or node
if self.val <= node.val:
self.next = List.mergeNodes(self.next,node)
return self
else:
node.next = List.mergeNodes(self,node.next)
return node
>>> list1 = List(1,2,4,8); list2 = List(1,3,3,5,5)
>>> list1.mergeNodes(list2)
1->1->2->3->3->4->5->5->8->None
>>> list2.mergeNodes(list1)
1->1->2->3->3->4->5->5->8->None
>>> list1,list2
([1->2->4->8->None], [1->3->3->5->5->None])
>>> list1.mergeNodes(list1)
1->1->2->2->4->4->8->8->None
>>> list2.mergeNodes(list2)
1->1->3->3->3->3->5->5->5->5->None
>>>
4. 合并多个有序链表
Merge k Sorted Lists (#23)
合并k个已排序的链表,并将其作为一个已排序的列表返回。前一题的升级版
示例
输入:
[
1->4->5,
1->3->4,
2->6
]
输出: 1->1->2->3->4->4->5->6
def Merge(self, *nodeList):
ret = List(self.head)
for lst in nodeList:
ret = ret.merge(lst)
return ret
>>> List.Merge(List(1,4,5),List(1,3,4),List(2,6))
[1->1->2->3->4->4->5->6->None]
>>>
5. 成对反转节点
Swap Nodes in Pairs (#24)
给定一个链表,每两个相邻节点交换一次,并返回其头指针。要求不能修改节点的数据域,假设或有成单的尾节点不反转。
示例
输入: 1->2->3->4.
输出: 2->1->4->3.
def swapPairs(self):
if not self.head.next: return self
ptr1 = ptr2 = self.head
ret = List()
ptr,ptr1 = ret.head,ptr1.next
while ptr1:
ptr.next = Node(ptr1.val)
ptr = ptr.next
ptr.next = Node(ptr2.val)
ptr = ptr.next
ptr1,ptr2 = ptr1.next,ptr2.next
if not ptr1: break
if not ptr1.next:
ptr.next = Node(ptr1.val)
ptr1,ptr2 = ptr1.next,ptr2.next
self.head = ret.head.next
return self
>>> a = List(1,2,3,4)
>>> a.swapPairs()
[2->1->4->3->None]
>>> b = List(1,2,3,4,5)
>>> b.swapPairs()
[2->1->4->3->5->None]
方法二:迭代法
def swap2pair(self):
if isinstance(self,List):
self = List(self.head)
self = self.head
if not self or not self.next:
return self
ptr = self.next
self.next = List.swap2pair(ptr.next)
ptr.next = self
return ptr
>>> a = List(1,2,3,4)
>>> a.swap2pair()
2->1->4->3->None
>>> b = List(1,2,3,4,5)
>>> b.swap2pair()
2->1->4->3->5->None# 迭代法返回的是节点Node()的链式结构而非链表List()
6. 成组反转节点
Reverse Nodes in k-Group (#25)
给定一个链表,每k个相邻节点为一组,各组一一反转,返回修改后的列表。k小于或等于链表的长度。如果节点的数量不是k的倍数,那么最后剩下的个数小于k不满一组的则保持原样不反转。
示例
输入: 1->2->3->4->5.
输出: k=2时,2->1->4->3->5;
k=3时,3->2->1->4->5.
def reverseKGroup(self, k):
if type(k) is not int or k<1:
raise BaseException('K = 1, 2, 3, ...')
if k==1: return self
ret,self = Node(),List(self)
ptr,ptr1 = self.head,ret
size = 0
while True:
kgroup = Node()
ptr2 = kgroup
count = 0
for _ in range(k):
size += 1
if ptr is None:
if k>=size:
raise BaseException('length of Node less than K')
break
ptr2.next = Node(ptr.val)
count += 1
ptr,ptr2 = ptr.next,ptr2.next
kgroup = kgroup.next
if count==k:
t,p = None,kgroup
while p:
p.next,t,p = t,p,p.next
kgroup = t
ptr2 = kgroup
for _ in range(k):
ptr1.next = Node(ptr2.val)
ptr1,ptr2 = ptr1.next,ptr2.next
else:
ptr1.next = kgroup
break
self.head = ret.next
return self
>>> a = List(1,2,3,4,5)
>>> a.reverseKGroup(2)
[2->1->4->3->5->None]
>>> a.reverseKGroup(3)
[3->2->1->4->5->None]>>> b = List(range(1,11))
>>> for i in range(1,8):
b.reverseKGroup(i)
[1->2->3->4->5->6->7->8->9->10->None]
[2->1->4->3->6->5->8->7->10->9->None]
[3->2->1->6->5->4->9->8->7->10->None]
[4->3->2->1->8->7->6->5->9->10->None]
[5->4->3->2->1->10->9->8->7->6->None]
[6->5->4->3->2->1->7->8->9->10->None]
[7->6->5->4->3->2->1->8->9->10->None]
>>>
7. 链表旋转
Rotate List (#61)
给定一个链表,将列表向右旋转k个节点,其中k为非负整数。
示例1
输入: 1->2->3->4->5->NULL, k = 2
输出: 4->5->1->2->3->NULL
解释:
rotate 1 steps to the right: 5->1->2->3->4->NULL
rotate 2 steps to the right: 4->5->1->2->3->NULL
示例2
输入: 0->1->2->NULL, k = 4
输出: 2->0->1->NULL
解释:
rotate 1 steps to the right: 2->0->1->NULL
rotate 2 steps to the right: 1->2->0->NULL
rotate 3 steps to the right: 0->1->2->NULL
rotate 4 steps to the right: 2->0->1->NULL
def rotateList(self,k):
node1,node2,ptr = Node(),Node(),self.head
length = self.size()
k %= length
if not k: return self
head,tail = node1,node2
for i in range(length-k):
head.next = Node(ptr.val)
head,ptr = head.next,ptr.next
while ptr:
tail.next = Node(ptr.val)
tail,ptr = tail.next,ptr.next
tail.next = node1.next
return List(node2.next)
>>> a = List(1,2,3,4,5)
>>> a.rotateList(1)
[5->1->2->3->4->None]
>>> a.rotateList(2)
[4->5->1->2->3->None]>>> b = List(0,1,2)
>>> for i in range(1,5):
b.rotateList(i)
[2->0->1->None]
[1->2->0->None]
[0->1->2->None]
[2->0->1->None]
>>>
直接调用已定义的基本方法.rotate()或者重载的右移运算也能完成任务:
>>> list1 = List(range(1,6))
>>> list1.rotate(-1)
[5->1->2->3->4->None]
>>> list1.rotate(-2)
[4->5->1->2->3->None]
>>> list1
[1->2->3->4->5->None]
>>> list1>>2
[4->5->1->2->3->None]
>>> list1
[4->5->1->2->3->None]
>>>>>> list2 = List(0,1,2)
>>> k = 4
>>> for i in range(1,k+1):
print(list2.rotate(-i))[2->0->1->None]
[1->2->0->None]
[0->1->2->None]
[2->0->1->None]
>>> list2
[0->1->2->None]
>>> list2 >> k
[2->0->1->None]
>>> list2
[2->0->1->None]
>>>
8. 删除重复节点Ⅰ
Remove Duplicates from Sorted List (#82)
给定一个已排序链表,删除重复节点,原始链表中多次出现的数字只能保留一次。
示例
输入: 1->1->2
输出: 1->2输入: 1->1->2->3->3
输出: 1->2->3
def deleteDup(self):
ret = List()
head,ptr = self.head,ret.head
while head:
if head.val!=ptr.val:
ptr.next = Node(head.val)
ptr = ptr.next
head = head.next
return List(ret.head.next)
>>> list1 = List(1,1,2)
>>> list1.deleteDup()
[1->2->None]
>>> list2 = List(1,1,2,3,3)
>>> list2.deleteDup()
[1->2->3->None]
>>>
>>> list3 = List(1,2,3,3,4,4,4,5)
>>> list3.deleteDup()
[1->2->3->4->5->None]
9. 删除重复节点Ⅱ
Remove Duplicates from Sorted List (#83)
给定一个排序链表,删除所有重复的节点,留原始链表有过重复的数字一个也不留。
示例
输入: 1->2->3->3->4->4->5
输出: 1->2->5输入: 1->1->1->2->3
输出: 2->3
def removeDup(self):
ret = List()
ptr1,ptr2 = self.head,ret.head
if not ptr1.next: return self
if ptr1.val!=ptr1.next.val:
ptr2.next = Node(ptr1.val)
ptr2 = ptr2.next
t,ptr1 = ptr1.val,ptr1.next
while ptr1.next:
if t!=ptr1.val!=ptr1.next.val:
ptr2.next = Node(ptr1.val)
ptr2 = ptr2.next
t = ptr1.val
ptr1 = ptr1.next
if t!=ptr1.val:
ptr2.next = Node(ptr1.val)
return List(ret.head.next)
>>> list1 = List(1,2,3,3,4,4,5)
>>> list1.removeDup()
[1->2->5->None]
>>> list2 = List(1,1,1,2,3)
>>> list2.removeDup()
[2->3->None]
>>> list3 = List(1,2,3,3)
>>> list3.removeDup()
[1->2->None]
10. 链表分组
Partition List (#86)
给定一个链表和一个整数,把链表分成“小于指定数”和“不小于指定数”的二组连接在一起,并且各组元素在本组中的先后位置保持与原链表相同。
示例
输入: 1->4->3->2->5->2->None, x = 3
输出: 1->2->2->4->3->5->None
def partition(self,x):
if not self.head.next: return self
gt,lt = Node(),Node()
ptr1,ptr2,ptr = gt,lt,self.head
while ptr:
if ptr.val<x:
ptr1.next = Node(ptr.val)
ptr1 = ptr1.next
else:
ptr2.next = Node(ptr.val)
ptr2 = ptr2.next
ptr = ptr.next
ptr1.next = lt.next
return List(gt.next)
>>> list1 = List(1,4,3,2,5,2); x = 3
>>> list1.partition(x)
[1->2->2->4->3->5->None]
>>>
11. 反转链表中一段节点
Reverse Linked List (a part of NodeList) (#92)
Reverse a linked list from position m to n. Do it in one-pass.
Note: 1 ≤ m ≤ n ≤ length of list.
示例
输入: 1->2->3->4->5->None, m = 2, n = 4
输出: 1->4->3->2->5->None
12. 重排链表
Reorder List (#143)
Given a singly linked list L: L0→L1→…→Ln-1→Ln,
reorder it to: L0→Ln→L1→Ln-1→L2→Ln-2→…
You may not modify the values in the list's nodes, only nodes itself may be changed.
给定一个链表,不允许修改数据域,按“从头尾向中间的顺序“重排节点。
示例
Given 1->2->3->4, reorder it to 1->4->2->3.
Given 1->2->3->4->5, reorder it to 1->5->2->4->3.
方法一:先遍历出长度和倒序链表,然后把两个链表的前半部分混插。
def reorder(self):
if not self.head.next: return self
size,tmp,ptr = 0,Node(),self.head
while ptr:
size += 1
tmp = Node(ptr.val,tmp)
ptr = ptr.next
ret = Node()
ptr1,ptr2,ptr = self.head,tmp,ret
for _ in range(size//2):
ptr.next = Node(ptr1.val)
ptr,ptr1 = ptr.next,ptr1.next
ptr.next = Node(ptr2.val)
ptr,ptr2 = ptr.next,ptr2.next
if size%2: ptr.next = Node(ptr1.val)
return List(ret.next)
>>> a = List(*range(1,5))
>>> a.reorder()
[1->4->2->3->None]
>>> b = List(*range(1,6))
>>> b.reorder()
[1->5->2->4->3->None]
>>> c = List(*range(1,7))
>>> c.reorder()
[1->6->2->5->3->4->None]
>>>
方法二:使用基本方法中的pophead(),poptail()反复弹出头尾节点,用弹出值新建一个链表。
def reorderHT(self):
if not self.head.next or not self.head.next.next:
return self
ret,self = Node(),List(self)
ptr = ret
while self:
ptr.next = Node(self.pophead())
ptr = ptr.next
try: ptr.next = Node(self.poptail())
except: break
ptr = ptr.next
return List(ret.next)
>>> a = List(1,2,3,4)
>>> a.reorderHT()
[1->4->2->3->None]
>>> b = List(1,2,3,4,5)
>>> b.reorderHT()
[1->5->2->4->3->None]
>>> c = List(1,2,3,4,5,6)
>>> c.reorderHT()
[1->6->2->5->3->4->None]
>>> c
[1->2->3->4->5->6->None]
>>>
13. 链表插入排序
Insertion Sort List (#147)
Sort a linked list using insertion sort.
示例
输入: 4->2->1->3
输出: 1->2->3->4输入: -1->5->3->4->0
输出: -1->0->3->4->5
已定义的基本方法中sorted(),sort()已能实现排序功能,但是排序时直接比较数据域的。
>>> list1 = List(6,3,4,5,2,1)
>>> list1.sorted()
[1->2->3->4->5->6->None]
>>> list1
[6->3->4->5->2->1->None]
>>> list1.sort()
[1->2->3->4->5->6->None]
>>> list1
[1->2->3->4->5->6->None]
>>>
插入排序:
def insertionSort(self):
if not self.head.next: return self
ret = Node()
ptr,ptr1 = List(self).head,ret
while ptr:
Next = ptr.next
while ptr1.next and ptr1.next.val<ptr.val:
ptr1 = ptr1.next
ptr.next,ptr1.next = ptr1.next,ptr
ptr,ptr1 = Next,ret
return List(ret.next)
>>> list1 = List(4,2,1,3)
>>> list1.insertionSort()
[1->2->3->4->None]
>>> list1
[4->2->1->3->None]
>>> list2 = List(-1,5,3,4,0)
>>> list2.insertionSort()
[-1->0->3->4->5->None]
>>> list2
[-1->5->3->4->0->None]
>>>
14. 链表归并排序
Sort List (#148)
Sort a linked list in O(n log n) time using constant space complexity.
归并排序: 时间复杂度 O(n log n),空间复杂度 O(1)
15. 删除指定值的所有节点
Remove Linked List Elements (#203)
删除给定链表中所有数值域等于指定值val的节点。
示例
输入: 1->2->6->3->4->5->6, val = 6
输出: 1->2->3->4->5
def removeValues(self,val):
if not self.head: return self
ret = Node()
ptr1,ptr2 = ret,self.head
while ptr2:
if ptr2.val!=val:
ptr1.next = Node(ptr2.val)
ptr1 = ptr1.next
ptr2 = ptr2.next
return List(ret.next)
>>> list1 = List(1,2,6,3,4,5,6); val = 6
>>> list1.removeValues(val)
[1->2->3->4->5->None]
>>> list1.removeValues(0)
[1->2->6->3->4->5->6->None]
>>>
方法二:迭代法
def removeElements(self,val):
if isinstance(self,List):
self = List(self.head.next) if self.head.val==val else List(self.head)
self = self.head
while self and self.val==val: self = self.next
if self: self.next = List.removeElements(self.next,val)
return self
>>> list1 = List(1,2,6,3,4,5,6); val = 6
>>> list1.removeElements(val)
1->2->3->4->5->None
>>> list1
[1->2->6->3->4->5->6->None]>>> list2 = List(3,1,2,3,3,4,3,5,5,3); val = 3
>>> list2.removeElements(val)
1->2->4->5->5->None
>>> list2
[3->1->2->3->3->4->3->5->5->3->None]
>>>
16. 反转链表
Reverse Linked List (#206)
Reverse a singly linked list.
链表的全部反转,这是很基础的方法。上面的第6题、第11题中已有部分的反转。
已定义的基本方法中已有 __reversed__、.reverse() 可以完成反转,把它们的代码稍作改进,相当于直接改变链表的指针方向,而不是用Node()嵌套新建一个链表,本质是一样的。
def reverseList(self):
ret,ptr = None,self.head
while ptr: ptr.next,ret,ptr = ret,ptr,ptr.next
self.head = ret
return self
>>> a = List(range(1,6))
>>> a.reverseList()
[5->4->3->2->1->None]
>>> b = List(range(0,10,2))
>>> b.reverseList()
[8->6->4->2->0->None]
>>> c = List(1)
>>> c.reverseList()
[1->None]
>>> d = List()
>>> d.reverseList()
[None->None]
>>> b = List(range(0,9,2))
>>> b.reverseList()
[8->6->4->2->0->None]
>>> b = List(range(0,3,2))
>>> b.reverseList()
[2->0->None]
>>>
17. 回文链表
Palindrome Linked List (#234)
判断给定链表是否为回文链表,即链表与反转后的一致。
示例
Input: 1->2
Output: FalseInput: 1->2->2->1
Output: True
def isPalindrome(self):
if not self.head.next:
return True
ptr,tmp = self.head,[]
while ptr:
tmp.append(ptr.val)
ptr = ptr.next
ptr = self.head
while ptr:
if ptr.val!=tmp.pop():
return False
ptr = ptr.next
return True
>>> list1 = List(1,2)
>>> list1.isPalindrome()
False
>>> list2 = List(1,2,2,1)
>>> list2.isPalindrome()
True
>>> list3 = List(1,2,3,2,1)
>>> List.isPalindrome(list3)
True
>>>
直接调用已定义的基本方法__reversed__、__eq__、__contains__也能办到:
>>> list1 = List(1,2)
>>> list1 in reversed(list1)
False
>>> list1 == reversed(list1)
False>>> list2 = List(1,2,2,1)
>>> list2 in reversed(list2)
True
>>> list2 == reversed(list2)
True
>>>
18. 删除指定节点
Delete Node in a Linked List (#237)
Write a function to delete a node (except the tail) in a singly linked list, given only access to that node.
Given linked list -- head = [4,5,1,9], which looks like following:
Input: head = [4,5,1,9], node = 5
Output: [4,1,9]
Explanation: You are given the second node with value 5, the linked list
should become 4 -> 1 -> 9 after calling your function.
Input: head = [4,5,1,9], node = 1
Output: [4,5,9]
Explanation: You are given the third node with value 1, the linked list should
become 4 -> 5 -> 9 after calling your function.
Note:
The linked list will have at least two elements.
All of the nodes' values will be unique.
The given node will not be the tail and it will always be a valid node of the linked list.
Do not return anything from your function.
与15题类同但只删除一个,如果不像Note中说明的一样:节点的值都是唯一的;那么还延用15题的方法则需要设置一个标记:重复的只不复制第一个。
def removeVal1(self,val):
if not self.head: return self
ret,flag = Node(),True
ptr1,ptr2 = ret,self.head
while ptr2:
if flag and ptr2.val==val:
flag = False
else:
ptr1.next = Node(ptr2.val)
ptr1 = ptr1.next
ptr2 = ptr2.next
return List(ret.next)
>>> list1 = List(4,5,1,9); val = 5
>>> list1.removeVal1(val)
[4->1->9->None]
>>> list1.removeVal1(1)
[4->5->9->None]>>> list2 = List(1,2,6,3,4,5,6); val = 6
>>> list2.removeVal1(val)
[1->2->3->4->5->6->None]
>>>
方法二:遇到指定值,直接跳指下一个节点,self的值会被变更。
def removeVal2(self,val):
if not self.head: return self
if self.head.val==val:
self.head = self.head.next
else:
ptr = self.head
while ptr.next:
if ptr.next.val==val:
ptr.next = ptr.next.next
break
ptr = ptr.next
self.head = self.head or Node()
return self
>>> list1 = List(4,5,1,9); val = 5
>>> list1.removeVal2(val)
[4->1->9->None]
>>> list1.removeVal2(1)
[4->9->None]>>> list2 = List(1,2,6,3,4,5,6); val = 6
>>> list2.removeVal2(val)
[1->2->3->4->5->6->None]
>>> list2.removeVal2(6)
[1->2->3->4->5->None]
>>> list2.removeVal2(1)
[2->3->4->5->None]
>>>
直接调用已定义的基本方法.find()和.delete()也可完成:
>>> list1 = List(4,5,1,9); val = 5
>>> list1.delete(list1.find(val))
[4->1->9->None]
>>> list1.delete(list1.find(1))
[4->9->None]>>> list2 = List(1,2,6,3,4,5,6); val = 6
>>> list2.delete(list2.find(val))
[1->2->3->4->5->6->None]
>>> list2.delete(list2.find(val))
[1->2->3->4->5->None]
>>> list2.delete(list2.find(1))
[2->3->4->5->None]
>>>
19. 奇偶索引重排
Odd Even Linked List (#328)
给定一个单链表,按节点索引号的奇偶重新排列。
示例
输入: 1->2->3->4->5->NULL
输出: 1->3->5->2->4->NULL输入: 2->1->3->5->6->4->7->NULL
输出: 2->3->6->7->1->5->4->NULL
def oddevenIndex(self):
if not self.head.next: return self
odd,even,index = Node(),Node(),0
ptr1,ptr2,ptr = odd,even,self.head
while ptr:
index += 1
if index%2:
ptr1.next = Node(ptr.val)
ptr1 = ptr1.next
else:
ptr2.next = Node(ptr.val)
ptr2 = ptr2.next
ptr = ptr.next
ptr1.next = even.next
return List(odd.next)
>>> a = List(*range(1,6))
>>> a.oddevenIndex()
[1->3->5->2->4->None]
>>> b = List(2,1,3,5,6,4,7)
>>> b.oddevenIndex()
[2->3->6->7->1->5->4->None]
>>>
类似题目:给定一个单链表,按节点数值域的奇偶重新排列。这类按要求分组的都与第10题属于同一类型。
def oddevenNumber(self):
if not self.head.next: return self
odd,even = Node(),Node()
ptr1,ptr2,ptr = odd,even,self.head
while ptr:
if ptr.val%2:
ptr1.next = Node(ptr.val)
ptr1 = ptr1.next
else:
ptr2.next = Node(ptr.val)
ptr2 = ptr2.next
ptr = ptr.next
ptr1.next = even.next
return List(odd.next)
>>> a = List(*range(1,6))
>>> a.oddevenNumber()
[1->3->5->2->4->None]>>> b = List(2,1,3,5,6,4,7)
>>> b.oddevenNumber()
[1->3->5->7->2->6->4->None]
>>>
20. 两数之和 II
Add Two Numbers II (#445)
You are given two non-empty linked lists representing two non-negative integers. The most significant digit comes first and each of their nodes contain a single digit. Add the two numbers and return it as a linked list.
You may assume the two numbers do not contain any leading zero, except the number 0 itself.
Follow up:
What if you cannot modify the input lists? In other words, reversing the lists is not allowed.
第一题的变形,本题的链表是正序表示两个整数的非空链表,不允许反转完成加法。
示例
输入: (7 -> 2 -> 4 -> 3) + (5 -> 6 -> 4)
输出: 7 -> 8 -> 0 -> 7
def Add2NumII(self,node):
len1,len2 = self.size(),node.size()
ret1,ret2,self = [],[],List(self.head)
if len1>len2:
ptr1,ptr2 = self.head,node.head
else:
ptr1,ptr2 = node.head,self.head
len1,len2 = len2,len1
for _ in range(len1-len2):
ret1.append(ptr1.val)
ret2.append(0)
ptr1 = ptr1.next
while ptr2:
ret1.append(ptr1.val)
ret2.append(ptr2.val)
ptr1,ptr2 = ptr1.next,ptr2.next
ret,carry = Node(),0
for _ in range(len1):
Sum = carry + ret1.pop() + ret2.pop()
carry,Sum = divmod(Sum,10)
ret = Node(Sum,ret)
if carry: ret = Node(1,ret)
return ret
>>> list1 = List(7,2,4,3); list2 = List(5,6,4)
>>> list1.Add2NumII(list2)
7->8->0->7->None
>>> list2.Add2NumII(list1)
7->8->0->7->None
>>> list1 = List(5,2,0,8); list2 = List(9,5,5,3,3)
>>> list1.Add2NumII(list2)
1->0->0->7->4->1->None
>>> list2.Add2NumII(list1)
1->0->0->7->4->1->None
>>>
21 . 链表类设计
Design Linked List (#707)
Design your implementation of the linked list. You can choose to use the singly linked list or the
doubly linked list. A node in a singly linked list should have two attributes: val and next. val is the
value of the current node, and next is a pointer/reference to the next node. If you want to use the
doubly linked list, you will need one more attribute prev to indicate the previous node in the
linked list. Assume all nodes in the linked list are 0-indexed.
Implement these functions in your linked list class:
get(index) : Get the value of the index-th node in the linked list. If the index is invalid, return -1.
addAtHead(val) : Add a node of value val before the first element of the linked list. After the insertion, the new node will be the first node of the linked list.
addAtTail(val) : Append a node of value val to the last element of the linked list.
addAtIndex(index, val) : Add a node of value val before the index-th node in the linked list. If index equals to the length of linked list, the node will be appended to the end of linked list. If index is greater than the length, the node will not be inserted.
deleteAtIndex(index) : Delete the index-th node in the linked list, if the index is valid.
Example:
MyLinkedList linkedList = new MyLinkedList();
linkedList.addAtHead(1);
linkedList.addAtTail(3);
linkedList.addAtIndex(1, 2); // linked list becomes 1->2->3
linkedList.get(1); // returns 2
linkedList.deleteAtIndex(1); // now the linked list is 1->3
linkedList.get(1); // returns 3
Note:
All values will be in the range of [1, 1000].
The number of operations will be in the range of [1, 1000].
Please do not use the built-in LinkedList library.
类似的功能在已定义的基本方法中都有:
>>> linkedList = List(1)
>>> linkedList.append(3)
[1->3->None]
>>> linkedList.insert(1,2)
[1->2->3->None]
>>> linkedList[1]
2
>>> linkedList.delete(1)
[1->3->None]
>>> linkedList[1]
3
22 . 链表中间节点
Middle of the Linked List (#876)
Given a non-empty, singly linked list with head node head, return a middle node of linked list.
If there are two middle nodes, return the second middle node.
给定一个非空链表,返回中间节点。如有2个中间节点(节点数为偶数时)返回第2个。
方法一:先遍历出长度,再遍历一半长度
def middleNode(self):
if not self.head.next:
return self.head.val
ptr,size = self.head,0
while ptr:
size += 1
ptr = ptr.next
ptr = self.head
for _ in range(size//2):
ptr = ptr.next
return ptr.val
>>> list1 = List(range(1,6))
>>> list1
[1->2->3->4->5->None]
>>> list1.middleNode()
3
>>> list2 = List(range(1,7))
>>> list2
[1->2->3->4->5->6->None]
>>> list2.middleNode()
4
>>>
方法二:快指针步进2,慢指针步进1,当快指针移到尾部时,慢指针就在中间节点上。
def middleNodefs(self):
if not self.head.next: return self.head.val
fast,slow = self.head,self.head
while fast:
if fast.next is None: return slow.val
fast,slow = fast.next,slow.next
fast = fast.next
return slow.val
>>> list1 = List(range(1,6))
>>> list1.middleNodefs()
3
>>> list1 = List(range(1,7))
>>> list1.middleNodefs()
4
>>>
23 . 下一个大节点
Next Greater Node In Linked List (#1019)
We are given a linked list with head as the first node. Let's number the nodes in the list: node_1, node_2, node_3, ... etc.
Each node may have a next larger value: for node_i, next_larger(node_i) is the node_j.val such that j > i, node_j.val > node_i.val, and j is the smallest possible choice. If such a j does not exist, the next larger value is 0.
Return an array of integers answer, where answer[i] = next_larger(node_{i+1}).
Note that in the example inputs (not outputs) below, arrays such as [2,1,5] represent the serialization of a linked list with a head node value of 2, second node value of 1, and third node value of 5.
找出链表中第一个比自己大的节点,没找到则为0。
示例
输入: [2,1,5]
输出: [5,5,0]输入: [2,7,4,3,5]
输出: [7,0,5,5,0]输入: [1,7,5,1,9,2,5,1]
输出: [7,9,9,9,0,5,0,0]
def nextGreaterNode(self):
ret,ptr = [],self.head
while ptr:
cur,tmp = ptr,ptr.val
while cur:
if cur.val>tmp:
ret.append(cur.val)
break
cur = cur.next
else:
ret.append(0)
ptr = ptr.next
return ret
>>> a = List([2,1,5])
>>> a.nextGreaterNode()
[5, 5, 0]
>>> b = List([2,7,4,3,5])
>>> b.nextGreaterNode()
[7, 0, 5, 5, 0]
>>> c = List([1,7,5,1,9,2,5,1])
>>> c.nextGreaterNode()
[7, 9, 9, 9, 0, 5, 0, 0]
>>>
------===The End===------

本文档详细介绍了单向链表的节点类和链表类的基本方法,涵盖了加法、删除倒数节点、合并排序等高级操作,适合链表算法深入学习者。
491

被折叠的 条评论
为什么被折叠?



