【Python 3.7】机器学习:KNN算法预测鸢尾花数据集的准确性问题
在 KNN.py 文件中的 KNN:
import numpy as np
from math import sqrt
from collections import Counter
class KNNClassifier:
def __init__(self, k):
"""初始化kNN分类器"""
assert k >= 1, "k must be valid"
self.k = k
self._X_train = None
self._y_train = None
def fit(self, X_train, y_train):
"""根据训练数据集X_train和y_train训练kNN分类器"""
assert X_train.shape[0] == y_train.shape[0], \
"the size of X_train must be equal to the size of y_train"
assert self.k <= X_train.shape[0], \
"the size of X_train must be at least k."
self._X_train = X_train
self._y_train = y_train
return self
def predict(self, X_predict):
"""给定待预测数据集X_predict,返回表示X_predict的结果向量"""
assert self._X_train is not None and self._y_train is not None, \
"must fit before predict!"
assert X_predict.shape[1] == self._X_train.shape[1], \
"the feature number of X_predict must be equal to X_train"
y_predict = [self._predict(x) for x in X_predict]
return np.array(y_predict)
def _predict(self, x):
"""给定单个待预测数据x,返回x的预测结果值"""
assert x.shape[0] == self._X_train.shape[1], \
"the feature number of x must be equal to X_train"
distances = [sqrt(np.sum((x_train - x) ** 2))
for x_train in self._X_train]
nearest = np.argsort(distances)
topK_y = [self._y_train[i] for i in nearest[:self.k]]
votes = Counter(topK_y)
return votes.most_common(1)[0][0]
def __repr__(self):
return "KNN(k=%d)" % self.k
建立测试的模型 model_selection.py 文件:
import numpy as np
def train_test_split(X,y,test_ratio=0.2,seed=None):
"""将数据 X 和 y 按照test_ratio分割成X_train, X_test, y_train, y_test"""
assert X.shape[0]==y.shape[0]
assert 0.0<=test_ratio<=1.0
if seed:
np.random.seed(seed)
shuffle_indexes = np.random.permutation(len(X))
test_size = int(len(X)*test_ratio)
test_indexes = shuffle_indexes[:test_size]
train_indexes = shuffle_indexes[test_size:]
X_train = X[train_indexes]
y_train = y[train_indexes]
X_test = X[test_indexes]
y_test = y[test_indexes]
return X_train,X_test,y_train,y_test
调用KNN.py和model_selection.py中的函数来对鸢尾花数据集进行测试:
from sklearn.model_selection import train_test_split
from sklearn import datasets
'''载入鸢尾花数据集'''
iris=datasets.load_iris()
X=iris.data
y=iris.target
X_train, X_test, y_train, y_test = train_test_split(X,y)
from KNN import KNNClassifier
my_knn_clf=KNNClassifier(k=3)
my_knn_clf.fit(X_train,y_train)
y_predict=my_knn_clf.predict(X_test)
print(sum(y_predict==y_test))
"""预测准确率"""
print(sum(y_predict==y_test)/len(y_test))
运行一次的结果为:
37
0.9736842105263158
该博客基于Python 3.7,围绕机器学习中KNN算法展开。通过KNN.py文件建立模型,在model_selection.py文件进行测试,调用两文件函数对鸢尾花数据集测试,还给出了运行一次的结果。
917

被折叠的 条评论
为什么被折叠?



