POJ 2084 Game of Connections

本文探讨了一个经典的游戏连线问题,通过分析得出其解的数量与卡特兰数之间的联系,并提供了一种使用大数运算求解卡特兰数的具体实现方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

Game of Connections
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 4839 Accepted: 2515

Description

This is a small but ancient game. You are supposed to write down the numbers 1, 2, 3, . . . , 2n - 1, 2n consecutively in clockwise order on the ground to form a circle, and then, to draw some straight line segments to connect them into number pairs. Every number must be connected to exactly one another. 
And, no two segments are allowed to intersect. 
It's still a simple game, isn't it? But after you've written down the 2n numbers, can you tell me in how many different ways can you connect the numbers into pairs? Life is harder, right?

Input

Each line of the input file will be a single positive number n, except the last line, which is a number -1. 
You may assume that 1 <= n <= 100.

Output

For each n, print in a single line the number of ways to connect the 2n numbers into pairs.

Sample Input

2
3
-1

Sample Output

2
5

Source

 

 

/*
卡特兰数 + 大数运算,一开始自己推公式得到的结论是:
f(2 * n) = f(0) * f(2 * n - 2) + f(2) * f(2 * n - 4) + f(4) * f(2 * n - 6) + ... + f(2 * n - 2) * f(0);
然后纯粹基于递推来算, 发现结果是对的,但是速度太慢,超时了。后来想了想,这不就是卡特兰数吗?呵呵,问题解决了
F(n) = F(0) * F(n - 1) + F(1) * F(n - 2) + ... + F(n - 1) * F(0) = C(2 * n, n) / (n + 1), F(0) = 1
代码很长,大部分是自己写的大数运算工具模板.实在不想用JAVA水了,没意思,哈哈
*/

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值