/*
可以算作是A*算法了,利用priority_queue实现
*/
#include <iostream>
#include <queue>
#define MAX_N 100
#define MAX_K 10000
using namespace std;
struct node
{
int countv;
int data[MAX_N * MAX_N + 5][3]; //id, dist, coins
}nodes[MAX_N + 1];
int K, noden, edgen;
int minDist = INT_MAX;
int minCostDist[MAX_N + 1][MAX_K + 1]; //minCostDist[i][k]表示从1走到i花费k需要的最短路径长度
struct elem
{
int id, dist, cost;
};
struct compare
{
//返回false,e1才会排在前面
bool operator()(const elem &e1, const elem &e2)
{
return (e1.dist == e2.dist) ? e1.cost >= e2.cost : e1.dist > e2.dist;
}
};
priority_queue<elem, vector<elem>, compare> bfsq;
void bfs()
{
elem startNode, curNode, newNode;
startNode.cost = 0; startNode.dist = 0; startNode.id = 1;
minCostDist[1][0] = 0;
bfsq.push(startNode);
while(!bfsq.empty())
{
curNode = bfsq.top(); bfsq.pop();
if(curNode.id == noden)
{
if(curNode.dist < minDist)
minDist = curNode.dist;
return;
}
int num = nodes[curNode.id].countv;
for(int i = 1; i <= num; i++)
{
newNode.id = nodes[curNode.id].data[i][0];
newNode.dist = curNode.dist + nodes[curNode.id].data[i][1];
newNode.cost = curNode.cost + nodes[curNode.id].data[i][2];
int minv = minCostDist[newNode.id][newNode.cost];
if(newNode.cost <= K && newNode.dist < minv)
{
minCostDist[newNode.id][newNode.cost] = newNode.dist;
bfsq.push(newNode);
}
}
}
}
int main()
{
int i, from, to, dist, coins;
scanf("%d%d%d", &K, &noden, &edgen);
for(i = 1; i <= edgen; i++)
{
scanf("%d%d%d%d", &from, &to, &dist, &coins);
int pos = ++nodes[from].countv;
nodes[from].data[pos][0] = to;
nodes[from].data[pos][1] = dist;
nodes[from].data[pos][2] = coins;
}
memset(minCostDist, 5, sizeof(minCostDist));
bfs();
if(minDist != INT_MAX) printf("%d/n", minDist);
else printf("-1/n");
return 0;
}
POJ 1724 ROADS
最新推荐文章于 2020-10-03 16:35:31 发布
本文介绍了一种使用优先级队列实现的A*搜索算法,该算法应用于寻找带权重的最短路径问题。通过实例展示了如何在图中找到从起点到终点花费最小且路径最短的解决方案。

776

被折叠的 条评论
为什么被折叠?



