My CUDA Note

1. CUDA中的grid和block基本的理解

在这里插入图片描述

  1. Kernel: Kernel不是CPU,而是在GPU上运行的特殊函数。你可以把Kernel想象成GPU上并行执行的任务。当你从主机(CPU)调用Kernel时,它在GPU上启动,并在许多线程上并行运行。

  2. Grid: 当你启动Kernel时,你会定义一个网格(grid)。网格是一维、二维或三维的,代表了block的集合。

  3. Block: 每个block内部包含了许多线程。block也可以是一维、二维或三维的。

  4. Thread: 每个线程是Kernel的单个执行实例。在一个block中的所有线程可以共享一些资源,并能够相互通信。

你正确地指出,grid、block和thread这些概念在硬件级别上并没有直接对应的实体,它们是抽象的概念,用于组织和管理GPU上的并行执行。然而,GPU硬件是专门设计来支持这种并行计算模型的,所以虽然线程在物理硬件上可能不是独立存在的,但是它们通过硬件架构和调度机制得到了有效的支持。

另外,对于线程的管理和调度,GPU硬件有特定的线程调度单元,如NVIDIA的warp概念。线程被组织成更小的集合,称为warps(在NVIDIA硬件上),并且这些warps被调度到硬件上以供执行。

所以,虽然这些概念是逻辑和抽象的,但它们与硬件的实际执行密切相关,并由硬件特性和架构直接支持。

一般来说:

• 一个kernel对应一个grid

• 一个grid可以有多个block,一维~三维

• 一个block可以有多个thread,一维~三维

1.1. 1D traverse

在这里插入图片描述

void print_one_dim(){
   
   
    int inputSize = 8;
    int blockDim = 4;
    int gridDim = inputSize / blockDim; // 2

    // 定义block和grid的维度
    dim3 block(blockDim);  // 说明一个block有多少个threads
    dim3 grid(gridDim);    // 说明一个grid里面有多少个block 

    /* 这里建议大家吧每一函数都试一遍*/
    print_idx_kernel<<<grid, block>>>();
    // print_dim_kernel<<<grid, block>>>();
    // print_thread_idx_per_block_kernel<<<grid, block>>>();
    // print_thread_idx_per_grid_kernel<<<grid, block>>>();

    cudaDeviceSynchronize();
}

我觉得重点在这两行

  1. dim3 block(blockDim);: 这一行创建了一个三维向量block,用来定义每个block的大小。在这个例子中,blockDim是一个整数值4,所以每个block包含4个线程。dim3数据类型是CUDA中的一个特殊数据类型,用于表示三维向量。在这个情况下,你传递了一个整数值,所以block的其余维度将被默认设置为1。这意味着你将有一个包含4个线程的一维block。

  2. dim3 grid(gridDim);: 这一行创建了一个三维向量grid,用来定义grid的大小。gridDim的计算基于输入大小(inputSize)和每个block的大小(blockDim)。在这个例子中,inputSize是8,blockDim是4,所以gridDim会是2。这意味着整个grid将包含2个block。与block一样,你传递了一个整数值给grid,所以其余维度将被默认设置为1,得到一个一维grid。

总体来说,这两行代码定义了内核的执行配置,将整个计算空间划分为2个block,每个block包含4个线程。你可以想象这个配置如下:

  • Block 0: 线程0, 线程1, 线程2, 线程3
  • Block 1: 线程4, 线程5, 线程6, 线程7

然后,当你调用内核时,这些线程将被用来执行你的代码。每个线程可以通过其线程索引和block索引来访问自己在整个grid中的唯一位置。这些索引用于确定每个线程应处理的数据部分。

block idx:   1, thread idx in block:   0, thread idx:   4
block idx:   1, thread idx in block:   1, thread idx:   5
block idx:   1, thread idx in block:   2, thread idx:   6
block idx:   1, thread idx in block:   3, thread idx:   7
block idx:   0, thread idx in block:   0, thread idx:   0
block idx:   0, thread idx in block:   1, thread idx:   1
block idx:   0, thread idx in block:   2, thread idx:   2
block idx:   0, thread idx in block:   3, thread idx:   3

1.2 2D打印

// 8个线程被分成了两个
void print_two_dim(){
   
   
    int inputWidth = 4;

    int blockDim = 2;  
    int gridDim = inputWidth / blockDim;

    dim3 block(blockDim, blockDim);
    dim3 grid(gridDim, gridDim);

    /* 这里建议大家吧每一函数都试一遍*/
    // print_idx_kernel<<<grid, block>>>();
    // print_dim_kernel<<<grid, block>>>();
    // print_thread_idx_per_block_kernel<<<grid, block>>>();
    print_thread_idx_per_grid_kernel<<<grid, block>>>();

    cudaDeviceSynchronize();
}
  1. dim3 block(blockDim, blockDim);: 这里创建了一个二维的block,每个维度的大小都是blockDim,在这个例子中是2。因此,每个block都是2x2的,包含4个线程。由于dim3定义了一个三维向量,没有指定的第三维度会默认为1。

  2. dim3 grid(gridDim, gridDim);: 同样,grid也被定义为二维的,每个维度的大小都是gridDim。由于inputWidth是4,并且blockDim是2,所以gridDim会是2。因此,整个grid是2x2的,包括4个block。第三维度同样默认为1。

因此,整个执行配置定义了2x2的grid,其中包括4个2x2的block,总共16个线程。你可以将整个grid可视化如下:

  • Block (0,0):

    • 线程(0,0), 线程(0,1)
    • 线程(1,0), 线程(1,1)
  • Block (0,1):

    • 线程(2,0), 线程(2,1)
    • 线程(3,0), 线程(3,1)
  • Block (1,0):

    • 线程(4,0), 线程(4,1)
    • 线程(5,0), 线程(5,1)
  • Block (1,1):

    • 线程(6,0), 线程(6,1)
    • 线程(7,0), 线程(7,1)

输出中的“block idx”是整个grid中block的线性索引,而“thread idx in block”是block内线程的线性索引。最后的“thread idx”是整个grid中线程的线性索引。

请注意,执行的顺序仍然是不确定的。你看到的输出顺序可能在不同的运行或不同的硬件上有所不同。

block idx:   3, thread idx in block:   0, thread idx:  12
block idx:   3, thread idx in block:   1, thread idx:  13
block idx:   3, thread idx in block:   2, thread idx:  14
block idx:   3, thread idx in block:   3, thread idx:  15
block idx:   2, thread idx in block:   0, thread idx:   8
block idx:   2, thread idx in block:   1, thread idx:   9
block idx:   2, thread idx in block:   2, thread idx:  10
block idx:   2, thread idx in block:   3, thread idx:  11
block idx:   1, thread idx in block:   0, thread idx:   4
block idx:   1, thread idx in block:   1, thread idx:   5
block idx:   1, thread idx in block:   2, thread idx:   6
block idx:   1, thread idx in block:   3, thread idx:   7
block idx:   0, thread idx in block:   0, thread idx:   0
block idx:   0, thread idx in block:   1, thread idx:   1
block idx:   0, thread idx in block:   2, thread idx:   2
block idx:   0, thread idx in block:   3, thread idx:   3

1.3 3D grid

dim3 block(3, 4, 2);
dim3 grid(2, 2, 2);
  1. Block布局 (dim3 block(3, 4, 2)):

    • 这定义了每个block的大小为3x4x2,所以每个block包含24个线程。
    • 你可以将block视为三维数组,其中x方向有3个元素,y方向有4个元素,z方向有2个元素。
  2. Grid布局 (dim3 grid(2, 2, 2)):

    • 这定义了grid的大小为2x2x2,所以整个grid包含8个block。
    • 你可以将grid视为三维数组,其中x方向有2个元素,y方向有2个元素,z方向有2个元素。
    • 由于每个block包括24个线程,所以整个grid将包括192个线程。

整体布局可以视为8个3x4x2的block,排列为2x2x2的grid。

如果我们想用文字来表示整个结构,可能会是这样的:

  • Grid[0][0][0]:
    • Block(3, 4, 2) – 24个线程
  • Grid[0][0][1]:
    • Block(3, 4, 2) – 24个线程
  • Grid[0][1][0]:
    • Block(3, 4, 2) – 24个线程
  • Grid[0][1][1]:
    • Block(3, 4, 2) – 24个线程
  • Grid[1][0][0]:
    • Block(3, 4, 2) – 24个线程
  • Grid[1][0][1]:
    • Block(3, 4, 2) – 24个线程
  • Grid[1][1][0]:
    • Block(3, 4, 2) – 24个线程
  • Grid[1][1][1]:
    • Block(3, 4, 2) – 24个线程

这种三维结构允许在物理空间中进行非常自然的映射,尤其是当你的问题本身就具有三维的特性时。例如,在处理三维物理模拟或体素数据时,这种映射可能非常有用。

5. 通过维度打印出来对应的thread

在这里插入图片描述

比较推荐的打印方式

__global__ void print_cord_kernel(){
   
   
    int index = threadIdx.z * blockDim.x * blockDim.y + \
              threadIdx.y * blockDim.x + \
              threadIdx.x;

    int x  = blockIdx.x * blockDim.x + threadIdx.x;
    int y  = blockIdx.y * blockDim.y + threadIdx.y;

    printf("block idx: (%3d, %3d, %3d), thread idx: %3d, cord: (%3d, %3d)\n",
         blockIdx.z, blockIdx.y, blockIdx.x,
         index, x, y);
}

index是线程索引的问题,首先,考虑z维度。对于每一层z,都有blockDim.x * blockDim.y个线程。所以threadIdx.z乘以该数量给出了前面层中的线程总数,从图上看也就是越过了多少个方块

然后,考虑y维度。对于每一行y,都有blockDim.x个线程。所以threadIdx.y乘以该数量给出了当前层中前面行的线程数,也就是在当前方块的xy面我们走了几个y, 几行

最后加上thread x完成索引的坐标

void print_cord(){
   
   
    int inputWidth = 4;

    int blockDim = 2;
    int gridDim = inputWidth / blockDim;

    dim3 block(blockDim, blockDim);
    dim3 grid(gridDim, gridDim);

    print_cord_kernel<<<grid, block>>>();
    // print_thread_idx_per_grid_kernel<<<grid, block>>>();
    cudaDeviceSynchronize();
}
block idx: (  0,   1,   0), thread idx:   0, cord: (  0,   2)
block idx: (  0,   1,   0), thread idx:   1, cord: (  1,   2)
block idx: (  0,   1,   0), thread idx:   2, cord: (  0,   3)
block idx: (  0,   1,   0), thread idx:   3, cord: (  1,   3)
block idx: (  0,   1,   1), thread idx:   0, cord: (  2,   2)
block idx: (  0,   1,   1), thread idx:   1, cord: (  3,   2)
block idx: (  0,   1,   1), thread idx:   2, cord: (  2,   3)
block idx: (  0,   1,   1), thread idx:   3, cord: (  3,   3)
block idx: (  0,   0,   1), thread idx:   0, cord: (  2,   0)
block idx: (  0,   0,   1), thread idx:   1, cord: (  3,   0)
block idx: (  0,   0,   1), thread idx:   2, cord: (  2,   1)
block idx: (  0,   0,   1), thread idx:   3, cord: (  3,   1)
block idx: (  0,   0,   0), thread idx:   0, cord: (  0,   0)
block idx: (  0,   0,   0), thread idx:   1, cord: (  1,   0)
block idx: (  0,   0,   0), thread idx:   2, cord: (  0,   1)
block idx: (  0,   0,   0), thread idx:   3, cord: (  1,   1)

跟之前2D的一样, 同样看起来有点乱,是因为是异步执行的

1.4 最后看一个多个grid的案例

void print_coordinates() {
   
   
    dim3 block(3, 4, 2);
    dim3 grid(2, 2, 2);

    print_cord_kernel<<<grid, block>>>();

    cudaDeviceSynchronize(); // 确保内核完成后才继续执行主机代码
}
block idx: (  0,   1,   0), thread idx:   0, cord: (  0,   4)
block idx: (  0,   1,   0), thread idx:   1, cord: (  1,   4)
block idx: (  0,   1,   0), thread idx:   2, cord: (  2,   4)
block idx: (  0,   1,   0), thread idx:   3, cord: (  0,   5)
block idx: (  0,   1,   0), thread idx:   4, cord: (  1,   5)
block idx: (  0,   1,   0), thread idx:   5, cord: (  2,   5)
block idx: (  0,   1,   0), thread idx:   6, cord: (  0,   6)
block idx: (  0,   1,   0), thread idx:   7, cord: (  1,   6)
block idx: (  0,   1,   0), thread idx:   8, cord: (  2,   6)
block idx: (  0,   1,   0), thread idx:   9, cord: (  0,   7)
block idx: (  0,   1,   0), thread idx:  10, cord: (  1,   7)
block idx: (  0,   1,   0), thread idx:  11, cord: (  2,   7)
block idx: (  0,   1,   0), thread idx:  12, cord: (  0,   4)
block idx: (  0,   1,   0), thread idx:  13, cord: (  1,   4)
block idx: (  0,   1,   0), thread idx:  14, cord: (  2,   4)
block idx: (  0,   1,   0), thread idx:  15, cord: (  0,   5)
block idx: (  0,   1,   0), thread idx:  16, cord: (  1,   5)
block idx: (  0,   1,   0), thread idx:  17, cord: (  2,   5)
block idx: (  0,   1,   0), thread idx:  18, cord: (  0,   6)
block idx: (  0,   1,   0), thread idx:  19, cord: (  1,   6)
block idx: (  0,   1,   0), thread idx:  20, cord: (  2,   6)
block idx: (  0,   1,   0), thread idx:  21, cord: (  0,   7)
block idx: (  0,   1,   0), thread idx:  22, cord: (  1,   7)
block idx: (  0,   1,   0), thread idx:  23, cord: (  2,   7)
block idx: (  1,   1,   1), thread idx:   0, cord: (  3,   4)
block idx: (  1,   1,   1), thread idx:   1, cord: (  4,   4)
block idx: (  1,   1,   1), thread idx:   2, cord: (  5,   4)
block idx: (  1,   1,   1), thread idx:   3, cord: (  3,   5)
block idx: (  1,   1,   1), thread idx:   4, cord: (  4,   5)
block idx: (  1,   1,   1), thread idx:   5, cord: (  5,   5)
block idx: (  1,   1,   1), thread idx:   6, cord: (  3,   6)
block idx: (  1,   1,   1), thread idx:   7, cord: (  4,   6)
block idx: (  1,   1,   1), thread idx:   8, cord: (  5,   6)
block idx: 
考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
<think>好的,我现在需要帮助用户解决在安装Python包时遇到的FileNotFoundError,具体是CUDA的nvcc路径找不到的问题。首先,我得回忆一下用户提供的引用内容,看看有没有线索。 用户引用了几个类似的问题,比如安装detectron2、peft和deepspeed时出现的错误,提示找不到nvcc文件。这些错误的共同点都是CUDA路径配置不正确,特别是环境变量CUDA_HOME可能没有正确设置。根据引用[2]和[4]中的解决方案,设置CUDA_HOME环境变量到正确的CUDA安装目录可以解决问题。例如,用户提到export CUDA_HOME=/usr/local/cuda-12.2/,然后成功安装。这说明检查并设置正确的CUDA_HOME是关键步骤。 接下来,我需要考虑用户可能的CUDA安装路径。通常,CUDA默认安装在/usr/local/cuda,但有时候用户可能安装了多个版本,路径可能不同。比如,用户引用[3]中的路径是/usr/local/cuda-11.2,而引用[2]中是cuda-12.2。因此,用户需要确认自己的CUDA安装位置,可能通过ls /usr/local/cuda*来查看存在的目录。 另外,引用[3]提到使用sudo并指定Python路径来安装包,这可能涉及到权限问题或者虚拟环境中的路径配置。如果用户是在虚拟环境中操作,可能需要确保CUDA_HOME在该环境中也被正确设置。此外,nvcc的位置通常在CUDA的bin目录下,例如/usr/local/cuda/bin/nvcc,但错误信息中的路径是/usr/local/cuda/bin/bin/nvcc,这明显有问题,说明安装脚本可能错误地拼接了路径,可能是因为CUDA_HOME配置错误,导致脚本在错误的位置寻找nvcc。 用户可能没有正确安装CUDA工具包,或者安装不完整。比如,nvcc是CUDA编译器,属于CUDA工具包的一部分。如果用户只安装了运行时库而没有安装开发工具,可能会导致nvcc缺失。因此,检查CUDA工具包的安装情况也是必要的。 总结一下,解决步骤可能包括: 1. 确认CUDA安装路径,并设置CUDA_HOME环境变量。 2. 检查nvcc是否在正确路径下,并确保CUDA工具包已正确安装。 3. 在安装命令中指定正确的CUDA路径,或者使用sudo权限。 4. 更新或重新安装CUDA工具包,确保nvcc存在。 还需要考虑用户的操作系统是否为Linux,因为路径和环境变量的设置方式可能不同。例如,在.bashrc或.zshrc中添加export语句,然后source使环境变量生效。此外,可能需要检查pip安装的包是否与CUDA版本兼容,比如某些包需要特定版本的CUDA。 最后,生成相关问题时要围绕CUDA路径配置、环境变量设置、安装权限、CUDA工具包完整性等方面,帮助用户扩展理解,预防类似问题。</think>### 分步解决方案 #### 1. **确认CUDA安装路径** - 检查CUDA实际安装位置: ```bash ls /usr/local/cuda* ``` 输出可能显示如 `/usr/local/cuda-12.2` 或 `/usr/local/cuda`。 - 如果存在符号链接 `/usr/local/cuda`,通常指向当前使用的CUDA版本(例如 `/usr/local/cuda-12.2`)。 #### 2. **设置环境变量 `CUDA_HOME`** - 根据实际路径设置环境变量: ```bash export CUDA_HOME=/usr/local/cuda-12.2 # 替换为你的CUDA路径 ``` - 永久生效需将以下内容添加到 `~/.bashrc` 或 `~/.zshrc`: ```bash echo 'export CUDA_HOME=/usr/local/cuda-12.2' >> ~/.bashrc source ~/.bashrc ``` #### 3. **验证 `nvcc` 可执行文件** - 检查 `nvcc` 是否存在: ```bash ls $CUDA_HOME/bin/nvcc ``` - 若未找到,可能需要重新安装CUDA工具包: ```bash sudo apt install cuda-toolkit-12-2 # 替换为你的CUDA版本 ``` #### 4. **安装时指定CUDA路径** - 在安装命令中显式传递CUDA路径: ```bash CUDA_HOME=/usr/local/cuda-12.2 pip install package_name ``` #### 5. **修复权限问题** - 若因权限不足导致路径访问失败,尝试使用 `sudo` 并指定完整Python路径: ```bash sudo /path/to/python -m pip install package_name ``` #### 6. **检查CUDA版本兼容性** - 确保安装的Python包与CUDA版本匹配: ```bash nvcc --version # 查看CUDA版本 ``` --- ### 详细说明 此错误通常由以下原因导致: 1. **CUDA路径未正确配置**:安装脚本依赖 `CUDA_HOME` 或 `PATH` 定位CUDA工具链[^2][^4]。 2. **CUDA工具包不完整**:缺少开发组件(如 `nvcc`)会导致路径缺失[^1][^3]。 3. **权限问题**:非管理员用户可能无法访问系统级CUDA目录[^3]。 通过上述步骤可系统性解决问题。若仍失败,建议检查CUDA安装日志或软件包文档。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值