【二分+几何】E - Crossed Ladders

本文探讨了一道经典的几何问题——交叉梯子问题。通过给定两梯子的长度及交叉点离地面的高度,求解街道宽度。利用数学方法进行求解,并通过编程实现了数值解的计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E - Crossed Ladders
Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Description

A narrow street is lined with tall buildings. An x foot long ladder is rested at the base of the building on the right side of the street and leans on the building on the left side. A y foot long ladder is rested at the base of the building on the left side of the street and leans on the building on the right side. The point where the two ladders cross is exactly c feet from the ground. How wide is the street?

Input

Input starts with an integer T (≤ 10), denoting the number of test cases.

Each test case contains three positive floating point numbers giving the values of xy, and c.

Output

For each case, output the case number and the width of the street in feet. Errors less than 10-6 will be ignored.

Sample Input

4

30 40 10

12.619429 8.163332 3 

10 10 3

10 10 1

Sample Output

Case 1: 26.0328775442

Case 2: 6.99999923

Case 3: 8

Case 4: 9.797958971



0<=wide<=min(x,y);
可供参考:http://blog.youkuaiyun.com/lyy289065406/article/details/6648562

代码:
#include<cstdio>
#include<cmath>
double x,y,c,w,maxn;
double judge(double mid)
{
	return 1-c/sqrt(x*x-mid*mid)-c/sqrt(y*y-mid*mid);
}
int main()
{
	int t,k=1;
	while(~scanf("%d",&t))
	{
		while(~scanf("%lf%lf%lf",&x,&y,&c))
		{
			maxn=x;
			if(maxn<y)
				maxn=y;
			double l=0.0,r=maxn,mid;
			while(r-l>1e-6)
			{
				mid=(l+r)/2;			
				if(judge(mid)>0)
				{
					l=mid;
				}
				else 
				{
					r=mid;
				}
			}
			printf("Case %d: %.7lf\n",k++,mid);    //Errors less than 10-6 will be ignored.  小数大于6位就满足题意 
		}		
	}
	return 0;
 }



``` package oy.tol.tra; import java.util.function.Predicate; public class Algorithms { public static <T extends Comparable<T>> void reverse(T[] array) { int i = 0; int j = array.length - 1; while (i < j) { T temp = array[i]; array[i] = array[j]; array[j] = temp; i++; j--; } } public static <T extends Comparable<T>> void sort(T[] array) { boolean swapped; for (int i = 0; i < array.length - 1; i++) { swapped = false; for (int j = 0; j < array.length - 1 - i; j++) { if (array[j].compareTo(array[j + 1]) > 0) { T temp = array[j]; array[j] = array[j + 1]; array[j + 1] = temp; swapped = true; } } if (!swapped) break; } } public static <T extends Comparable<T>> int binarySearch(T aValue, T[] fromArray, int fromIndex, int toIndex) { int low = fromIndex; int high = toIndex ; while (low <= high) { int mid = low + (high - low) / 2; int cmp = fromArray[mid].compareTo(aValue); if (cmp < 0) { low = mid + 1; } else if (cmp > 0) { high = mid - 1; } else { return mid; } } return -1; } public static <E extends Comparable<E>> void fastSort(E[] array) { quickSort(array, 0, array.length - 1); } private static <E extends Comparable<E>> void quickSort(E[] array, int begin, int end) { if (begin < end) { int partitionIndex = partition(array, begin, end); quickSort(array, begin, partitionIndex - 1); quickSort(array, partitionIndex + 1, end); } } public static <T> int partition(T[] array, int count, Predicate<T> rule) { if (array == null || count <= 0) { return 0; // No elements to partition } int left = 0; // Pointer for elements that satisfy the rule int right = count - 1; // Pointer for elements that do not satisfy the rule while (left <= right) { // Move the left pointer to the right until an element does not satisfy the rule while (left <= right && rule.test(array[left])) { left++; } // Move the right pointer to the left until an element satisfies the rule while (left <= right && !rule.test(array[right])) { right--; } // Swap elements if pointers have not crossed if (left <= right) { T temp = array[left]; array[left] = array[right]; array[right] = temp; left++; right--; } } // Return the index of the first element that does not satisfy the rule return left; } }```The method partition(T[], int, Predicate<T>) in the type Algorithms is not applicable for the arguments (E[], int, int)Java(67108979)
最新发布
03-11
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值