大数据架构:flume-ng+Kafka+Storm+HDFS 实时系统组合

本文介绍了一个实时大数据处理架构,利用Flume采集数据并通过Kafka作为消息中间件,最终使用Storm进行流式计算处理。文中详细介绍了各组件的功能、配置及整合方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://www.aboutyun.com/thread-6855-1-1.html

个人观点:大数据我们都知道hadoop,但并不都是hadoop.我们该如何构建大数据库项目。对于离线处理,hadoop还是比较适合的,但是对于实时性比较强的,数据量比较大的,我们可以采用Storm,那么Storm和什么技术搭配,才能够做一个适合自己的项目。下面给大家可以参考。
可以带着下面问题来阅读本文章:
1.一个好的项目架构应该具备什么特点?
2.本项目架构是如何保证数据准确性的?
3.什么是Kafka?
4.flume+kafka如何整合?
5.使用什么脚本可以查看flume有没有往Kafka传输数据


做软件开发的都知道模块化思想,这样设计的原因有两方面:
一方面是可以模块化,功能划分更加清晰,从“数据采集--数据接入--流失计算--数据输出/存储”
 

1).数据采集
负责从各节点上实时采集数据,选用cloudera的flume来实现
2).数据接入
由于采集数据的速度和数据处理的速度不一定同步,因此添加一个消息中间件来作为缓冲,选用apache的kafka
3).流式计算
对采集到的数据进行实时分析,选用apache的storm
4).数据输出
对分析后的结果持久化,暂定用mysql
另一方面是模块化之后,假如当Storm挂掉了之后, 数据采集和数据接入还是继续在跑着,数据不会丢失,storm起来之后可以继续进行流式计算;

那么接下来我们来看下整体的架构图
 

详细介绍各个组件及安装配置:
操作系统:ubuntu

Flume
Flume是Cloudera提供的一个 分布式、可靠、和高可用的海量日志采集、聚合和传输的日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
下图为flume典型的体系结构:
Flume数据源以及输出方式:
Flume提供了从console(控制台)、RPC(Thrift-RPC)、text(文件)、tail(UNIX tail)、syslog(syslog日志系统,支持TCP和UDP等2种模式),exec(命令执行)等数据源上收集数据的能力,在我们的系统中目前使用exec方式进行日志采集。
Flume的数据接受方,可以是console(控制台)、text(文件)、dfs(HDFS文件)、RPC(Thrift-RPC)和syslogTCP(TCP syslog日志系统)等。在我们系统中由kafka来接收。

Flume下载及文档:
http://flume.apache.org/
Flume安装:
  1. $tar zxvf apache-flume-1.4.0-bin.tar.gz/usr/local
复制代码
Flume启动命令:
  1. $bin/flume-ng agent --conf conf --conf-file conf/flume-conf.properties --name producer -Dflume.root.logger=INFO,console
复制代码
Kafka

kafka是一种高吞吐量的分布式发布订阅消息系统,她有如下特性:
  • 通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
  • 高吞吐量:即使是非常普通的硬件kafka也可以支持每秒数十万的消息。
  • 支持通过kafka服务器和消费机集群来分区消息。
  • 支持Hadoop并行数据加载。
kafka的目的是提供一个发布订阅解决方案,它可以处理消费者规模的网站中的所有动作流数据。 这种动作(网页浏览,搜索和其他用户的行动)是在现代网络上的许多社会功能的一个关键因素。 这些数据通常是由于吞吐量的要求而通过处理日志和日志聚合来解决。 对于像Hadoop的一样的日志数据和离线分析系统,但又要求实时处理的限制,这是一个可行的解决方案。kafka的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群机来提供实时的消费。
kafka 分布式订阅架构如下图:--取自Kafka官网
罗宝兄弟文章上的架构图是这样的
其实两者没有太大区别,官网的架构图只是把Kafka简洁的表示成一个Kafka Cluster,而上面架构图就相对详细一些;

Kafka版本:0.8.0
Kafka下载及文档: http://kafka.apache.org/
Kafka安装:
  1. > tar xzf kafka-<VERSION>.tgz
  2. > cd kafka-<VERSION>
  3. > ./sbt update
  4. > ./sbt package
  5. > ./sbt assembly-package-dependency
复制代码
启动及测试命令:
(1) start server

  1. > bin/zookeeper-server-start.shconfig/zookeeper.properties
  2. > bin/kafka-server-start.shconfig/server.properties
复制代码
这里是官网上的教程,kafka本身有内置zookeeper,但是我自己在实际部署中是使用单独的zookeeper集群,所以第一行命令我就没执行,这里只是些出来给大家看下。

配置独立的zookeeper集群需要配置server.properties文件,讲zookeeper.connect修改为独立集群的IP和端口

  1. zookeeper.connect=nutch1:2181
复制代码
(2)Create a topic

  1. > bin/kafka-create-topic.sh --zookeeper localhost:2181 --replica 1 --partition 1 --topic test
  2. > bin/kafka-list-topic.sh --zookeeperlocalhost:2181
复制代码
(3)Send some messages

  1. > bin/kafka-console-producer.sh--broker-list localhost:9092 --topic test
复制代码
(4)Start a consumer

  1. > bin/kafka-console-consumer.sh--zookeeper localhost:2181 --topic test --from-beginning
复制代码
kafka-console-producer.sh和kafka-console-cousumer.sh只是系统提供的命令行工具。这里启动是为了测试是否能正常生产消费;验证流程正确性
在实际开发中还是要自行开发自己的生产者与消费者;
kafka的安装也可以参考我之前写的文章: http://blog.youkuaiyun.com/weijonathan/article/details/18075967
Storm
Twitter将Storm正式开源了,这是一个 分布式的、容错的实时计算系统,它被托管在GitHub上,遵循  Eclipse Public License 1.0。Storm是由BackType开发的实时处理系统,BackType现在已在Twitter麾下。GitHub上的最新版本是Storm 0.5.2,基本是用Clojure写的。
 

Storm的主要特点如下:
  • 简单的编程模型。类似于MapReduce降低了并行批处理复杂性,Storm降低了进行实时处理的复杂性。
  • 可以使用各种编程语言。你可以在Storm之上使用各种编程语言。默认支持Clojure、Java、Ruby和Python。要增加对其他语言的支持,只需实现一个简单的Storm通信协议即可。
  • 容错性。Storm会管理工作进程和节点的故障。
  • 水平扩展。计算是在多个线程、进程和服务器之间并行进行的。
  • 可靠的消息处理。Storm保证每个消息至少能得到一次完整处理。任务失败时,它会负责从消息源重试消息。
  • 快速。系统的设计保证了消息能得到快速的处理,使用ØMQ作为其底层消息队列。(0.9.0.1版本支持ØMQ和netty两种模式)
  • 本地模式。Storm有一个“本地模式”,可以在处理过程中完全模拟Storm集群。这让你可以快速进行开发和单元测试。
由于篇幅问题,具体的安装步骤可以参考: Storm-0.9.0.1安装部署 指导
接下来重头戏开始拉!那就是框架之间的整合啦

flume和kafka整合
2.提取插件中的flume-conf.properties文件
修改该文件:#source section
producer.sources.s.type = exec
producer.sources.s.command = tail -f -n+1 /mnt/hgfs/vmshare/test.log
producer.sources.s.channels = c
修改所有topic的值改为test
将改后的配置文件放进flume/conf目录下
在该项目中提取以下jar包放入环境中flume的lib下:
注:这里的flumeng-kafka-plugin.jar这个包,后面在github项目中已经移动到package目录了。找不到的童鞋可以到package目录获取。

完成上面的步骤之后,我们来测试下flume+kafka这个流程有没有走通;
我们先启动flume,然后再启动kafka,启动步骤按之前的步骤执行;接下来我们使用kafka的kafka-console-consumer.sh脚本查看是否有flume有没有往Kafka传输数据;
 
以上这个是我的test.log文件通过flume抓取传到kafka的数据;说明我们的flume和kafka流程走通了;
大家还记得刚开始我们的流程图么,其中有一步是通过flume到kafka,还有一步是到hdfs的;而我们这边还没有提到如何存入kafka且同时存如hdfs;
flume是支持数据同步复制,同步复制流程图如下,取自于flume官网,官网用户指南地址: http://flume.apache.org/FlumeUserGuide.html
 
怎么设置同步复制呢,看下面的配置:

  1. #2个channel和2个sink的配置文件  这里我们可以设置两个sink,一个是kafka的,一个是hdfs的;
  2. a1.sources = r1
  3. a1.sinks = k1 k2
  4. a1.channels = c1 c2
复制代码
具体配置大伙根据自己的需求去设置,这里就不具体举例了

kafka和storm的整合

2.使用maven package进行编译,得到storm-kafka-0.8-plus-0.3.0-SNAPSHOT.jar包    --有转载的童鞋注意下,这里的包名之前写错了,现在改正确了!不好意思!
3.将该jar包及kafka_2.9.2-0.8.0-beta1.jar、metrics-core-2.2.0.jar、scala-library-2.9.2.jar (这三个jar包在kafka项目中能找到)
备注:如果开发的项目需要其他jar,记得也要放进storm的Lib中比如用到了mysql就要添加mysql-connector-java-5.1.22-bin.jar到storm的lib下
那么接下来我们把storm也重启下;
完成以上步骤之后,我们还有一件事情要做,就是使用kafka-storm0.8插件,写一个自己的Storm程序;
这里我给大伙附上一个我弄的storm程序,百度网盘分享地址:链接:  http://pan.baidu.com/s/1jGBp99W 密码: 9arq
先稍微看下程序的创建Topology代码
 
数据操作主要在WordCounter类中,这里只是使用简单JDBC进行插入处理
 
这里只需要输入一个参数作为Topology名称就可以了!我们这里使用本地模式,所以不输入参数,直接看流程是否走通;

  1. storm-0.9.0.1/bin/storm jar storm-start-demo-0.0.1-SNAPSHOT.jar com.storm.topology.MyTopology
复制代码
先看下日志,这里打印出来了往数据库里面插入数据了
 
然后我们查看下 数据库;插入成功了!
 
到这里我们的整个整合就完成了!
但是这里还有一个问题,不知道大伙有没有发现。
由于我们使用storm进行分布式流式计算,那么分布式最需要注意的是数据一致性以及避免脏数据的产生;所以我提供的测试项目只能用于测试,正式开发不能这样处理;
晨色星空J2EE(一个网名)给的建议是建立一个zookeeper的 分布式全局锁,保证数据一致性,避免脏数据录入!
zookeeper客户端框架大伙可以使用Netflix Curator来完成,由于这块我还没去看,所以只能写到这里了!

MPU6050是一款广泛应用在惯性测量单元(IMU)中的微型传感器,由InvenSense公司生产。它集成了三轴加速度计和三轴陀螺仪,能够检测设备在三维空间中的线性加速度和角速度,进而计算出物体的姿态、运动和方向。在本项目中,MPU6050被用来获取设备的YAW、PITCH、ROLL这三个关键的姿态角,这些数据将通过OLED显示屏进行实时显示。 1. **MPU6050工作原理**: MPU6050内部包含两个主要传感器:加速度计用于测量重力加速度,提供X、Y、Z三个轴的线性加速度信息;陀螺仪则测量绕三个轴的旋转速率。通过融合这两个传感器的数据,可以计算出设备的动态运动状态。 2. **姿态角的定义**: - **YAW(偏航角)**:表示设备相对于一个参考方向的旋转角度,通常以水平面为基准。 - **PITCH(俯仰角)**:是设备沿垂直轴相对于水平面的倾斜角度,向上为正,向下为负。 - **ROLL(翻滚角)**:是设备围绕前向轴的旋转角度,向右为正,向左为负。 3. **数据处理与姿态解算**: 为了从原始的加速度和角速度数据中获取准确的姿态角,需要应用卡尔曼滤波、互补滤波或者Madgwick算法等高级数据融合方法。这些算法可以有效地消除噪声,提高姿态估计的稳定性和精度。 4. **OLED显示屏**: OLED(有机发光二极管)显示器是一种自发光技术,具有高对比度、快速响应时间以及广视角的优点。在该项目中,OLED用于实时显示YAW、PITCH、ROLL角,为用户提供了直观的视觉反馈。 5. **硬件连接与编程**: 实现这一功能需要将MPU6050通过I2C或SPI接口连接到微控制器(如Arduino、Raspberry Pi等)。编写相应的固件程序来读取传感器数据,并将其转换为姿态角,然后将结果显示在OLED屏幕上。 6. **软件实现**: 在编程过程中,通常会用到相关的库文件,如Arduino IDE中的Wire库来处理I2C通信,Adafruit的MPU6050库来与传感器交互,以及Adafruit_GFX和Adafruit_SSD1306库来驱动OLED屏幕。 7. **调试与优化**: 项目实施过程中可能遇到的问题包括传感器漂移、数据不准确等,可以通过调整滤波器参数、校准传感器以及优化算法来改善。 综上,"MPU6050(OLED显示姿态角)"项目涉及了传感器技术、微控制器编程、数据融合算法、嵌入式显示等多个领域的知识,对于学习和实践物联网、机器人、无人机等领域的开发者来说,是一个很好的动手实践项目。
基于C#开发的一个稳定可靠的上位机系统,旨在满足工业控制的需求。该系统集成了多个功能界面,如操作界面、监控界面、工艺流显示界面、工艺表界面、工艺编辑界面、曲线界面和异常报警界面。每个界面都经过精心设计,以提高用户体验和工作效率。例如,操作界面和监控界面对触摸屏友好,支持常规点击和数字输入框;工艺流显示界面能够实时展示工艺步骤并变换颜色;工艺表界面支持Excel和加密文件的导入导出;工艺编辑界面采用树形编辑方式;曲线界面可展示八组曲线并自定义纵坐标数值;异常报警界面能够在工艺流程出现问题时及时报警。此外,该系统还支持与倍福TC2、TC3和西门子PLC1200/300等下位机设备的通信,确保生产线的顺畅运行。系统参考欧洲工艺软件开发,已稳定运行多年,证明了其可靠性和稳定性。 适合人群:从事工业自动化领域的工程师和技术人员,尤其是对C#编程有一定基础的人群。 使用场景及目标:适用于需要构建高效、稳定的工业控制系统的企业和个人开发者。主要目标是提升生产效率、确保生产安全、优化工艺流程管理和实现数据的有效管理与传输。 其他说明:文中提供了部分示例代码片段,帮助读者更好地理解具体实现方法。系统的复杂度较高,但凭借C#的强大功能和开发团队的经验,确保了系统的稳定性和可靠性。
内容概要:本文详细介绍了OpenMV在机器视觉领域的高级应用,涵盖基础回顾、高级功能详解、高级编程技巧、进阶应用场景及实战项目。OpenMV作为基于机器视觉的开源嵌入式系统,广泛应用于工业检测、智能安防、机器人等领域。文中深入探讨了图像处理技术(如滤波、边缘检测、特征检测与匹配、图像分割)、对象检测与跟踪(如Haar级联分类器、深度学习目标检测、卡尔曼滤波)等高级功能。此外,文章还讲解了多线程编程、算法优化、内存管理和并行计算等编程技巧,并展示了OpenMV在工业检测、智能交通和医疗领域的具体应用案例。最后,通过构建智能安防系统的实战项目,演示了OpenMV在入侵检测和人脸识别方面的应用。 适合人群:具备一定编程基础和技术背景的工程师或研究人员,尤其是对机器视觉、嵌入式系统感兴趣的从业者。 使用场景及目标:①掌握OpenMV的基础和高级功能,应用于工业检测、智能安防、机器人等领域的项目开发;②通过多线程编程和性能优化技术,提升程序的运行效率和响应速度;③学习如何利用OpenMV实现图像处理、对象检测与跟踪等复杂任务,满足实际应用场景的需求。 阅读建议:本文内容丰富,涵盖了从理论到实战的各个方面,建议读者结合实际项目需求,逐步学习和实践文中提到的技术和方法。特别是对于高级功能和编程技巧部分,可以通过动手实验加深理解。同时,关注最新的技术和算法进展,以适应不断发展的机器视觉领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值