论文阅读: Semantics-guided Triplet Loss

ICCV 2021

Abstract

  • 一个度量学习方法,通过浏览语义引导的局部集合去优化内在深度表示。
  • 一个新颖的特征融合模块能有效利用跨模态特异质特征。

Senantics-guided Triplet Loss

基本假设:

  • 在场景语义分割图像中,目标内部相邻像素拥有同样的深度值,而跨目标边界上深度值变化很大。
    请添加图片描述

方法

  • 将语义图像分割成KxK大小的块,stride为1。在每一个块,中心点为anchor,与anchor有相同标签的点为positive 像素 P i + P_i^+ Pi+,反之为Negative像素 P i − P_i^- Pi

  • 如果 ∣ P i − ∣ |P_i^-| Pi=0,则 P i P_i Pi位于目标内部,若 ∣ P i − ∣ |P_i^-| Pi ∣ P i + ∣ |P_i^+| Pi+都大与0,意味着 P i P_i Pi跨域了边界。

  • 对正负距离的定义:
    在这里插入图片描述

  • 目的在于减少anchor与正样本的距离增加与负样本的距离。

  • 然而目标间的深度变化并非必然的远,因此当负距离超过正距离一定程度,设置一个超参:
    在这里插入图片描述

  • semantics-guided triplet los L S G T L_{SGT} LSGT L p i L_{p_i} Lpi的均值,但只包含满足条件: ∣ P i − ∣ |P_i^-| Pi ∣ P i + ∣ |P_i^+| Pi+都大于T。

(To be continued)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BlueagleAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值