Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 217002 Accepted Submission(s): 51163
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and
1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end
position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
这个和1231最大子序列那道题基本一样的,就输出改了一下格式,参考上篇博客,就不重复了
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 100010
using namespace std;
int s[maxn];
int main(){
int T, t, n, m, v, st, en, kcase = 1;
cin >> T;
while(T--){
scanf("%d", &n);
memset(s, 0, sizeof(s));
st = en = v = 1;
for(int i = 1; i <= n; i++){
scanf("%d", &s[i]);
if(i == 1){
t = m = s[1];
continue;
}
if(t + s[i] < s[i]){
t = s[i];
v = i;
}
else{
t += s[i];
}
if(t > m){
st = v;
en = i;
m = t;
}
}
printf("Case %d:\n%d %d %d\n", kcase++, m, st, en);
if(T){
printf("\n");
}
}
return 0;
}