Contest of Rope Pulling-hdu 6804-随机排序

张三组织了一场绳索拔河比赛,旨在平衡两队力量并最大化参赛者的总美学价值。通过随机调整策略,算法需找出最优解,确保公平竞争的同时提升视觉效果。

Rope Pulling, also known as Tug of War, is a classic game. Zhang3 organized a rope pulling contest between Class 1 and Class 2.

There are n students in Class 1 and m students in Class 2. The ith student has strength wi and beauty-value vi. Zhang3 needs to choose some students from both classes, and let those chosen from Class 1 compete against those chosen from Class 2. It is also allowed to choose no students from a class or to choose all of them.

To be a fair contest, the total strength of both teams must be equal. To make the contest more beautiful, Zhang3 wants to choose such a set of students, that the total beauty-value of all participants is maximized. Please help her determine the optimal total beauty-value.


Input
The first line of the input gives the number of test cases, T(1≤T≤30)T(1≤T≤30)T(1T30). T test cases follow.

For each test case, the first line contains two integers n,m(1≤n,m≤1000)n,m(1≤n,m≤1000)n,m(1n,m1000), representing the number of students in Class 1 and Class 2.

Then (n+m) lines follow, describing the students. The ith line contains two integers wi,vi(1≤wi≤1000,−109≤vi≤109),(1≤wi≤1000,−10^9≤vi≤10^9),(1wi1000,109vi109), representing the strength and the beauty-value of the ith student. The first n students come from Class 1, while the other m students come from Class 2.

The sum of (n+m) in all test cases doesn’t exceed 10410^4104.


Output
For each test case, print a line with an integer, representing the optimal total beauty-value.

思路
使用随机数振荡乱搞,内部原理不清楚,但通过震荡可以减少极端的上界跟下界来优化数组大小与时间复杂度

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
template <typename T>
inline void read(T &x)
{
    int tmp = 1;char c = getchar();x = 0;
    while (c > '9' || c < '0'){if (c == '-')tmp = -1;c = getchar();}
    while (c >= '0' && c <= '9'){x = x * 10 + c - '0';c = getchar();}
    x *= tmp;
}
const int inf=0x3f3f3f3f;
const int mod=998244353;
const int N=2e3+10;
const int M=1e6+10;
typedef pair<int,int> pii;
vector<pii>vec;
ll dp[M];
int main(){
	ios::sync_with_stdio(false);cin.tie(nullptr); cout.tie(nullptr);
	int T;read(T);
	srand(time(0));
	const int mid=1e5;
	while(T--){
		memset(dp,0x8f,sizeof dp);
		int n,m;read(n),read(m);
		vec.clear();
		for(int i=1;i<=n;++i){
			int w,v;read(w),read(v);
			vec.push_back({w,v});
		}
		for(int i=1;i<=m;++i){
			int w,v;read(w),read(v);
			vec.push_back({-w,v});
		}
		random_shuffle(vec.begin(),vec.end());
		dp[mid]=0;
		for(int i=0;i<n+m;++i){
			pii &p=vec[i];
			if(p.first>0){
				for(int i=mid<<1;i>=p.first;--i){
					if(dp[i]<dp[i-p.first]+p.second) dp[i]=dp[i-p.first]+p.second;
				}
			}
			else{
				for(int i=0;i<=mid*2+p.first;++i){
					if(dp[i]<dp[i-p.first]+p.second) dp[i]=dp[i-p.first]+p.second;
				}
			}
		}
		printf("%lld\n",dp[mid]);
	}
	return 0;
}
考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值