51nod 1616 最小集合(数论)(枚举)

本文探讨了一个有趣的问题:如何根据部分已知元素还原一个特殊性质的集合,并通过算法给出了求解集合最小元素数量的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最小集合

A君有一个集合。
这个集合有个神奇的性质。
若X,Y属于该集合,那么X与Y的最大公因数也属于该集合。
但是他忘了这个集合中原先有哪些数字。
不过幸运的是,他记起了其中n个数字。
当然,或许会因为过度紧张,他记起来的数字可能会重复。
他想还原原先的集合。
他知道这是不可能的……
现在他想知道的是,原先这个集合中至少存在多少数。

样例解释:
该集合中一定存在的是{1,2,3,4,6}

Input
第一行一个数n(1<=n<=100000)。
第二行n个数,ai(1<=ai<=1000000,1<=i<=n)。表示A君记起来的数字。
输入的数字可能重复。
Output
输出一行表示至少存在多少种不同的数字。
Input示例
5
1 3 4 6 6
Output示例
5

ps:想了大半天都没想出好方法,看来5级题现在并不适合我啊0.0,看一下官方题解

观察题目性质。
性质1:该集合中一定存在输入的数字中若干数的最大公因数。
这个证明比较简单,例如我们有 a1, a2, ..., an 这些数,那么 gcd(a1,a2) 一定存在该集合,然后 gcd(a1,a2,a3) 也一定存在该集合,
依次类推。

所以我们对于每个数i,都求出在n个数中有多少数是它的倍数,记为 f(i) 。
然后观察 f(2× i), f(3× i), .., f(x× i), ... 中是否存在一个数等于 f(i) ,若不存在,则i一定存在于该集合。

说白了就是枚举每个数字是否在集合中
因为若j在集合中,那么j必定为集合中某些数的最大公约数

代码:

#include<stdio.h>

#define maxn 1000000+10
int maxx,f[maxn];

void getinput()
{
    int n;
    scanf("%d",&n);
    int x;
    maxx=0;
    for(int i=0; i<n; i++)
    {
        scanf("%d",&x);
        f[x]=1;//记录集合中的数
        if(x>maxx)
            maxx=x;
    }
}

void solve(int n)
{
    for(int i=1; i<=n; i++)
    {
        for(int j=(i<<1); j<=n; j+=i)
            if(f[j])
                ++f[i];//记录在集合中i的倍数有几个
    }
    int ans=0;
    for(int i=1; i<=n; i++)
    {
        if(f[i])//如果集合中存在一些数的最大公约数是i
        {
            bool flag=true;
            for(int j=(i<<1); j<=n; j+=i)
                if(f[j]==f[i])//i不是集合中这些数的最大公约数
                {
                    flag=false;
                    break;
                }
            if(flag)//i是集合中这些数的最大公约数
                ++ans;
        }
    }
    printf("%d\n",ans);
}

int main()
{
    getinput();
    solve(maxx);
    return 0;
}
题目 51nod 3478 涉及一个矩阵问题,要求通过最少的操作次数,使得矩阵中至少有 `RowCount` 行和 `ColumnCount` 列是回文的。解决这个问题的关键在于如何高效地枚举所有可能的行和列组合,并计算每种组合所需的操作次数。 ### 解法思路 1. **预处理每一行和每一列变为回文所需的最少操作次数**: - 对于每一行,计算将其变为回文所需的最少操作次数。这可以通过比较每对对称位置的值是否相同来完成。 - 对于每一列,计算将其变为回文所需的最少操作次数,方法同上。 2. **枚举所有可能的行和列组合**: - 由于 `N` 和 `M` 的最大值为 8,因此可以枚举所有可能的行组合和列组合。 - 对于每一种组合,计算其所需的最少操作次数,并取最小值。 3. **计算操作次数**: - 对于每一种组合,需要计算哪些行和列需要修改,并且注意行和列的交叉点可能会重复计算,因此需要去重。 ### 代码实现 以下是一个可能的实现方式,使用了枚举和位运算来处理组合问题: ```python def min_operations_to_palindrome(matrix, row_count, col_count): import itertools N = len(matrix) M = len(matrix[0]) # Precompute the cost to make each row a palindrome row_cost = [] for i in range(N): cost = 0 for j in range(M // 2): if matrix[i][j] != matrix[i][M - 1 - j]: cost += 1 row_cost.append(cost) # Precompute the cost to make each column a palindrome col_cost = [] for j in range(M): cost = 0 for i in range(N // 2): if matrix[i][j] != matrix[N - 1 - i][j]: cost += 1 col_cost.append(cost) min_total_cost = float('inf') # Enumerate all combinations of rows and columns rows = list(range(N)) cols = list(range(M)) from itertools import combinations for row_comb in combinations(rows, row_count): for col_comb in combinations(cols, col_count): # Calculate the cost for this combination cost = 0 # Add row costs for r in row_comb: cost += row_cost[r] # Add column costs for c in col_comb: cost += col_cost[c] # Subtract the overlapping cells for r in row_comb: for c in col_comb: # Check if this cell is part of the palindrome calculation if r < N // 2 and c < M // 2: if matrix[r][c] != matrix[r][M - 1 - c] and matrix[N - 1 - r][c] != matrix[N - 1 - r][M - 1 - c]: cost -= 1 min_total_cost = min(min_total_cost, cost) return min_total_cost # Example usage matrix = [ [0, 1, 0], [1, 0, 1], [0, 1, 0] ] row_count = 2 col_count = 2 result = min_operations_to_palindrome(matrix, row_count, col_count) print(result) ``` ### 代码说明 - **预处理成本**:首先计算每一行和每一列变为回文所需的最少操作次数。 - **枚举组合**:使用 `itertools.combinations` 枚举所有可能的行和列组合。 - **计算成本**:对于每一种组合,计算其成本,并考虑行和列交叉点的重复计算问题。 ### 复杂度分析 - **时间复杂度**:由于 `N` 和 `M` 的最大值为 8,因此枚举所有组合的时间复杂度为 $ O(N^{RowCount} \times M^{ColCount}) $,这在实际中是可接受的。 - **空间复杂度**:主要是存储预处理的成本,空间复杂度为 $ O(N + M) $。 ### 相关问题 1. 如何优化矩阵中行和列的枚举组合以减少计算时间? 2. 在计算行和列的交叉点时,如何更高效地处理重复计算的问题? 3. 如果矩阵的大小增加到更大的范围,如何调整算法以保持效率? 4. 如何处理矩阵中行和列的回文条件不同时的情况? 5. 如何扩展算法以支持更多的操作类型,例如翻转某个区域的值?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值