J - Modular Inverse
ZOJ - 3609The modular modular multiplicative inverse of an integer a modulo m is an integer xsuch that a-1≡x (mod m)
. This is equivalent to ax≡1 (mod m)
.
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
3 3 11 4 12 5 13
4 Not Exist 8
References
题目链接:https://cn.vjudge.net/contest/160971#problem/J
直接裸求逆元就好
代码:
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int exgcd(int a,int b,int& x,int& y){
if(b==0){
x=1;
y=0;
return a;
}
int r=exgcd(b,a%b,x,y);
int t=y;
y=x-(a/b)*y;
x=t;
return r;
}
int main(){
int t;
scanf("%d",&t);
while(t--){
int a,m;
int x,y;
scanf("%d%d",&a,&m);
int res=exgcd(a,m,x,y);
if(res!=1){
printf("Not Exist\n");
continue;
}
int ans=x;
ans=ans%m;
if(ans<=0) ans+=m;
printf("%d\n",ans);
}
}