Codeforces gym 101102 A dp

本文介绍了一种算法,用于解决两个玩家如何分摊购买游戏的成本问题。通过动态规划求解不同硬币组合的方式,确保两人支付金额之差不超过限定值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Coins
time limit per test
3 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Hasan and Bahosain want to buy a new video game, they want to share the expenses. Hasan has a set of N coins and Bahosain has a set of M coins. The video game costs W JDs. Find the number of ways in which they can pay exactly W JDs such that the difference between what each of them payed doesn’t exceed K.

In other words, find the number of ways in which Hasan can choose a subset of sum S1 and Bahosain can choose a subset of sum S2such that S1 + S2 = W and |S1 - S2| ≤ K.

Input

The first line of input contains a single integer T, the number of test cases.

The first line of each test case contains four integers NMK and W (1 ≤ N, M ≤ 150) (0 ≤ K ≤ W) (1 ≤ W ≤ 15000), the number of coins Hasan has, the number of coins Bahosain has, the maximum difference between what each of them will pay, and the cost of the video game, respectively.

The second line contains N space-separated integers, each integer represents the value of one of Hasan’s coins.

The third line contains M space-separated integers, representing the values of Bahosain’s coins.

The values of the coins are between 1 and 100 (inclusive).

Output

For each test case, print the number of ways modulo 109 + 7 on a single line.

Example
input
2
4 3 5 18
2 3 4 1
10 5 5
2 1 20 20
10 30
50
output
2
0


题意:第一个人有n枚硬币  第二个人有m枚硬币  两个人付的钱数差不能超过k  组成w的方案数


题解:先用dp求出两个人小于w钱数的方案  然后枚举k  求出答案  累加


#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll MOD = (ll)1e9+7;
ll dp1[15005],dp2[15005];
int main()
{
	int t;
	scanf("%d",&t);
	while(t--){
		memset(dp1,0,sizeof(dp1));
		memset(dp2,0,sizeof(dp2));
		int n,m,w,k;
		scanf("%d%d%d%d",&n,&m,&k,&w);
		int sum=0;
		dp1[0]=dp2[0]=1;
		for(int i=1;i<=n;i++){
			int x;
			scanf("%d",&x);
			sum+=x;
			for(int j=sum;j>=x;j--){
				dp1[j]+=dp1[j-x];
				dp1[j]%=MOD;
			}
		}
		sum=0;
		for(int i=1;i<=m;i++){
			int x;
			scanf("%d",&x);
			sum+=x;
			for(int j=sum;j>=x;j--){
				dp2[j]+=dp2[j-x];
				dp2[j]%=MOD;
			}
		}
		ll ans=0;
		for(int i=0;i<=w;i++){
			int j=w-i;
			if(abs(i-j)>k)continue;
			ans+=dp1[i]*dp2[j]%MOD;
			ans%=MOD;
		}
		printf("%lld\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值