Simon has an array a1, a2, ..., an, consisting of n positive integers. Today Simon asked you to find a pair of integers l, r(1 ≤ l ≤ r ≤ n), such that the following conditions hold:
- there is integer j (l ≤ j ≤ r), such that all integers al, al + 1, ..., ar are divisible by aj;
- value r - l takes the maximum value among all pairs for which condition 1 is true;
Help Simon, find the required pair of numbers (l, r). If there are multiple required pairs find all of them.
The first line contains integer n (1 ≤ n ≤ 3·105).
The second line contains n space-separated integers a1, a2, ..., an (1 ≤ ai ≤ 106).
Print two integers in the first line — the number of required pairs and the maximum value of r - l. On the following line print all l values from optimal pairs in increasing order.
5 4 6 9 3 6
1 3 2
5 1 3 5 7 9
1 4 1
5 2 3 5 7 11
5 0 1 2 3 4 5
In the first sample the pair of numbers is right, as numbers 6, 9, 3 are divisible by 3.
In the second sample all numbers are divisible by number 1.
In the third sample all numbers are prime, so conditions 1 and 2 are true only for pairs of numbers (1, 1), (2, 2), (3, 3), (4, 4), (5, 5).
题意:给定一个正整数数组,求最长的区间,使得该区间内存在一个元素,它能整除该区间的每个元素。
题解:如果一个区间不能向右再扩展 那么下次就从这里继续寻找答案
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
typedef long long ll;
ll a[300005],n;
vector<ll>sp[300005];
int main(){
ll i,j,ans=1;
scanf("%lld",&n);
for(i=1;i<=n;i++)scanf("%lld",&a[i]);
ll now=1;
while(now<=n){
ll mins=a[now];
ll l=now-1,anss=1;
while(l>=1){
if(a[l]%mins==0){
mins=min(mins,a[l]);
anss++;
l--;
}
else break;
}
ll r=now+1;
while(r<=n){
if(a[r]%mins==0){
mins=min(mins,a[r]);
anss++;
r++;
}
else break;
}
ans=max(ans,anss);
sp[anss].push_back(l+1);
now=r;
}
printf("%lld %lld\n",(ll)sp[ans].size(),ans-1);
for(i=0;i<sp[ans].size();i++){
printf("%lld ",sp[ans][i]);
}
printf("\n");
return 0;
}