zkgrails - LoadOnDemand

本文介绍如何使用ZK Grails实现数据的按需加载功能,通过创建Grails项目并安装ZK Grails插件,演示了如何定义Employee领域类及组件,并通过实例展示了如何实现列表和分页功能。

 

  LoadOnDemand  
A tutorial to load data on-demand.

This is a ZKGrails port of the program written in http://docs.zkoss.org/wiki/Use_Load-On-Demand_to_Handle_Huge_Data. This tutorial is working for ZKGrails 0.7.1 and later.

You need to prepare a Grails project for this tutorial by type:

grails create-app ondemand

Next, you need to install ZKGrails. The latest version will be installed automatically, when type:

grails install-plugin zk

We are going to demonstrate with a simple domain class, Employee. To create domain class in Grails, simply use the command create-domain-class, following by your class name:

grails create-domain-class employee

We then add two properties into domain class Employee, namely fullname and username. Both are string.

class Employee {

   
String fullname
   
String username

   
static constraints = {
   
}
}

grails create-zul employee

This will also create grails-apps/composers/EmployeeComposer.groovy for you.

<window apply="${employeeComposer}">

   
<vbox>
       
<image src="images/grails_logo.jpg"/>
   
</vbox>

   
<listbox id="lstEmployee" width="100%" checkmark="true">
       
<listhead sizable="true">
           
<listheader label="ID" sort="auto" />
           
<listheader label="Full Name" sort="auto" />
           
<listheader label="User Name" sort="auto" />
       
</listhead>
 
</listbox>
 
<paging id="pagEmployee" pageSize="30" />

</window>

From the code, you may see 2 properties lstEmployee, and pagEmployee. Both are injected by GrailsComposer, which is a subclass ofGenericForwardComposer. They, apparently, represents listbox and paging components from your .zul file.

You may notice that there is afterCompose closure. This closure is run by doAfterCompose, and it's a Groovy place to initialize your components.

The auto-wired event handle onPaging_pagEmployee will be called everytime you click pagEmployee to change the active page. Note that, the only argument of the handler must be ForwardEvent or Event to make it work.

I also show you the use of Groovy's default argument value declared at redraw method. That is, calling redraw() in afterCompose meansredraw(0).

Also in redraw method, there are two places to use dynamic methods added by ZKGrails. The first one is listbox#clear, of which removes all listitem. The second one is append, which accepts component construction via ZK Builder.

import org.zkoss.zkgrails.*
import org.zkoss.zk.ui.event.*

class EmployeeComposer extends GrailsComposer {

   
def lstEmployee
   
def pagEmployee

   
def afterCompose = { c ->
        pagEmployee
.totalSize = Employee.count()
        redraw
()
   
}

   
def onPaging_pagEmployee(ForwardEvent fe) {
       
def e = fe.origin
        redraw
(e.activePage)
   
}

   
def redraw(page=0) {
       
def list = Employee.list(offset: page * pagEmployee.pageSize,
                                 max
: pagEmployee.pageSize)

        lstEmployee
.clear()
        lstEmployee
.append {
            list
.each { e ->
                listitem
(value: e) {
                    listcell
(label: e.id)
                    listcell
(label: e.fullname)
                    listcell
(label: e.username)
               
}
           
}
       
}
   
}

}

Before getting your application run, you need some testing data to show. Open grails-app/conf/BootStrap.groovy, and then add the following snippet into init closure.

     def init = { servletContext ->
       
1000.times { i ->
           
new Employee(fullname: "Name $i", username: "user$i").save()
       
}
     
}

With the above code, we loop 1,000 times to create 1,000 domain objects of class Employee.

grails run-app

and point your browser to http://localhost:8080/ondemand/employee.zul

 

(Mathcad+Simulink仿真)基于扩展描述函数法的LLC谐振变换器小信号分析设计内容概要:本文围绕“基于扩展描述函数法的LLC谐振变换器小信号分析设计”展开,结合Mathcad与Simulink仿真工具,系统研究LLC谐振变换器的小信号建模方法。重点利用扩展描述函数法(Extended Describing Function Method, EDF)对LLC变换器在非线性工作条件下的动态特性进行线性化近似,建立适用于频域分析的小信号模型,并通过Simulink仿真验证模型准确性。文中详细阐述了建模理论推导过程,包括谐振腔参数计算、开关网络等效处理、工作模态分析及频响特性提取,最后通过仿真对比验证了该方法在稳定性分析与控制器设计中的有效性。; 适合人群:具备电力电子、自动控制理论基础,熟悉Matlab/Simulink和Mathcad工具,从事开关电源、DC-DC变换器或新能源变换系统研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握LLC谐振变换器的小信号建模难点与解决方案;②学习扩展描述函数法在非线性系统线性化中的应用;③实现高频LLC变换器的环路补偿与稳定性设计;④结合Mathcad进行公式推导与参数计算,利用Simulink完成动态仿真验证。; 阅读建议:建议读者结合Mathcad中的数学推导与Simulink仿真模型同步学习,重点关注EDF法的假设条件与适用范围,动手复现建模步骤和频域分析过程,以深入理解LLC变换器的小信号行为及其在实际控制系统设计中的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值