POJ - 3468 树状数组 区间查询区间更新 模板

本文介绍了一种处理大规模数组中区间加法与求和查询的高效算法,通过使用差分数组和前缀和技巧,实现了对给定区间的快速修改与求和。适用于数据结构与算法竞赛及实际应用中对大量数据进行区间操作的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c≤ 10000.
"Q a b" means querying the sum of AaAa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.

 

写一次以后当模板用

#include<iostream>
#include<cstdio>
//#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int M = 100000+100;
ll a[M];
ll sum[M];
ll c[2][M];
int n;
int lowbit(int x)
{
	return x&(-x);
}
void add(int x,int d,int k)
{
	while(x<=n)
	{
		c[k][x]+=d;
		x+=lowbit(x);
	}
}
ll ask(int x,int k)
{
	ll ans=0;
	while(x)
	{
		ans+=c[k][x];
		x-=lowbit(x);
	}
	return ans;
}
int main()
{
	int q;
	cin>>n>>q;
	for(int i =1 ;i <= n;i++)
	{
		scanf("%I64d",&a[i]);
		sum[i]=sum[i-1]+a[i];
	//	cout<<sum[i]<<endl;
	}
	char s[2];
	int l,r;
	ll ans=0;
	for(int i = 1; i <=q; i++)
	{
		scanf("%s%d%d",s,&l,&r);
		if(s[0]=='C')
		{
			int d;
			scanf("%d",&d);
			add(r+1,-d,0),add(r+1,-(r+1)*d,1);
			add(l,d,0),add(l,l*d,1);
		}
		else
		{
			ans=sum[r]+(r+1)*ask(r,0)-ask(r,1);
			ans-=sum[l-1]+l*ask(l-1,0)-ask(l-1,1);
			printf("%I64d\n",ans);
		}
	}
	return 0;
 } 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值