Rank and rref of matrices, dimension, nullspace

本文介绍了如何计算矩阵的秩,解释了秩、主元位置和简化行阶梯形矩阵(rref)的概念。通过示例展示了如何将矩阵转换为rref并确定秩。还讨论了矩阵的零空间,并提供了关于向量空间、独立向量、基和空间维数的背景知识。

How to calculate the rank of a matrix?

rank: number of pivots in a  matrix.

pivot position: the location that corresponds to a leading 1 in the rref of a matrix.

rref: reduced row echelon form.

Example:

A = \begin{pmatrix} 1 & 2& 3 &4 \\ 2& 2 & 2 &2 \\ 2& 3& 4& 6 \end{pmatrix}    R2 = R2-2*R1;R3 = R3-2*R1. we get the matrix like this:\begin{pmatrix} 1 & 2& 3 &4 \\ 0& -2 & -4 &-6 \\ 0& -1& -2& -2 \end{pmatrix}

continue the elimination, R3 = R3-1/2*R2, then the matrix is B=\begin{pmatrix} 1 & 2& 3 &4 \\ 0& -2 & -4 &-6 \\ 0& 0& 0& 1 \end{pmatrix}

We can easily find that there are 3 non-zero rows, so the rank of matrix A is 3. Pivots are 1,-2,1.

In matrix B, we have four columns. Column with pivot is called pivot column, and column without pivot value is a free column. In matrix B, there are 3 pivot variables and 1 free variable. That is to say, the column space is specified with only 3 pivot variables. We can use linear combinations of col1, col2, and col4 to get co3.

What is rref of matrix A? Now, we've got matrix B. rref is a matrix where the pivot is always one and other values in pivot column are 0.

Based on matrix B, R2 = R2/-2;R1 = R1-2*R2;R1 = R1+2*R3;R2 = R2-3*R3. rref(A) = \begin{pmatrix} 1 &0& -1 &0\\ 0& 1 & 2 &0 \\ 0& 0& 0& 1 \end{pmatrix}.

 

Background knowledge:

1. Nullspace of A: all solutions of x in Ax = 0;

when doing elimination, nullspace doesn't change.

Ax=0 <=>rref(A) x = 0;

Besides, nullspace is a vector space.

// vector space: when v,w ∈ space n, cv+dw∈n (c,d ∈R).

Proof: v,w∈nullspace of A => Av=0, Aw = 0 => A(v+w) = 0, A(cv) = 0.

 

2. some definitions:

a: Vectors x1,x2,...,xn are independent iff no combinations give zero vector.

 that is, c1*x1+c2*x2+...+cn*xn ≠ 0(except c1=c2=...=cn=0.)

b: Vectors v1,...vl span a space means: the space consists of all combinations of those vectors.

c: Basis for a space is a sequence of vectors, with the following two properties:

  1.they are independent; 2. they span the space.

. Besides, given a space, every basis for the space has the same number of vectors, that is called the dimension of the space.

  given a matrix A, rank(A) = # pivot columns = dimension(C(A)),

 dimension(nullspace(A)) = # free variables(? if they are independent.)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值