program Python

Java Python Project: Particle Filter-Based Robot Localization
November 12, 2023
Abstract
Based on the information from the ”Particle Filter” slides, here is a project idea for students
involving the implementation of a Particle Filter for localization and navigation using Python. The
project is designed to be straightforward enough for students with some programming experience,
yet challenging enough to provide a comprehensive understanding of Particle Filters in a practical
scenario.
1 Project Description
In this project, students will implement a Particle Filter to estimate the position of a robot moving in
a two-dimensional space. The robot’s environment will be represented as a grid, where each cell can
be either an obstacle or free space. The robot will have access to a simple sensor that provides noisy
measurements of its distance to the nearest obstacle in its front, left, right, and back directions.
1.1 Objectives
• Implement a Particle Filter: Students will develop a Particle Filter to estimate the robot’s
location based on sensor readings and a map of the environment.
• Simulate Robot Movement: Create a simulation where the robot moves a certain number of
steps in the environment, making random turns and moves.
• Sensor Data Simulation: Generate simulated sensor data based on the robot’s actual position
and the map.
• Visualization: Implement real-time visualization of the particle cloud and the estimated position
of the robot in comparison to its actual position.
1.2 Implementation Approaches
Basic Python Implementation: - Use standard Python libraries (‘numpy‘, ‘matplotlib‘ for visualization).
- Represent the map as a 2D array, the robot’s position as coordinates, and particles as
objects with position and weight attributes. - Implement particle resampling, motion update, and
measurement update functions.
Object-Oriented Approach: - Deffne classes for the Robot, Particle, and Map. - Implement
methods for movement, sensing, and updating in each class. - Use inheritance to showcase different
types of particles or robots, if desired.
Advanced Visualization with Pygame: - Utilize the ‘pygame‘ library for more interactive
and sophisticated visualization. - Allow real-time interaction, e.g., manually controlling the robot’s
movement or altering the environment.
2 Example Template
Import Necessary Libraries
1 import numpy as np
2 import matplotlib . pyplot as plt
3 from matplotlib . animation import FuncAnimation
1Deffne the Robot and Particle Classes
1 class Robot :
2 def __init__ (self , x, y, orientation ):
3 self .x = x
4 self .y = y
5 self . orientation = orientation # in degrees
6
7 def move (self , delta_x , delta_y , delta_orientation ):
8 self .x += delta_x
9 self .y += delta_y
10 self . orientation = ( self . orientation + delta_orientation ) % 360
11
12 # Simulate sensor reading based on robot ’s position
13 def sense (self , environment_map ):
14 # Implement sensor reading logic here
15 pass
16
17 class Particle :
18 def __init__ (self , x, y, orientation , weight ):
19 self .x = x
20 self .y = y
21 self . orientation = orientation
22 self . weight = weight
23
24 def move (self , delta_x , delta_y , delta_orientation ):
25 # Add noise to movement
26 self .x += delta_x + np. random . normal (0, 0.1)
27 self .y += delta_y + np. random . normal (0, 0.1)
28 self . orientation = ( self . orientation + delta_or program、Python ientation ) % 360 + np. random .
normal (0, 5)
29
30 # Update weight based on measurement
31 def update_weight (self , measurement , robot_measurement ):
32 # Implement weight updating logic here
33 pass
Initialize Robot and Particles
1 robot = Robot (50 , 50, 0)
2 particles = [ Particle (np. random . randint (100) , np. random . randint (100) , np. random .
randint (360) , 1.0) for _ in range (1000) ]
Particle Filter Algorithm
1 def particle_filter ( particles , robot , environment_map , move_command ):
2 # Move the robot and particles
3 robot . move (* move_command )
4 for particle in particles :
5 particle . move (* move_command )
6
7 # Update particles ’ weights based on sensor reading
8 robot_measurement = robot . sense ( environment_map )
9 for particle in particles :
10 particle_measurement = particle . sense ( environment_map ) # Particle ’s sense
method not shown
11 particle . update_weight ( particle_measurement , robot_measurement )
12
13 # Resampling
14 weights = np. array ([ particle . weight for particle in particles ])
15 weights /= np.sum( weights ) # Normalize weights
16 indices = np. random . choice ( range (len( particles )), size =len( particles ), p= weights )
17 resampled_particles = [ particles [i] for i in indices ]
18
19 return resampled_particles
Visualization using Matplotlib
1 def update ( frame_number ):
2 global particles , robot
3 move_command = (1, 0, 10) # Example move command
4 particles = particle_filter ( particles , robot , environment_map , move_command )
5
26 # Clear current plot
7 plt . cla ()
8
9 # Plot particles
10 xs , ys = zip (*[( particle .x, particle .y) for particle in particles ])
11 plt . scatter (xs , ys , color =’blue ’, s=1)
12
13 # Plot robot
14 plt . scatter ( robot .x, robot .y, color =’red ’, s =10)
15
16 plt . xlim (0, 100)
17 plt . ylim (0, 100)
18 plt . title (" Particle Filter Robot Localization ")
19
20 fig = plt . figure ()
21 ani = FuncAnimation (fig , update , frames =10 , interval =1000)
22 plt . show ()
Note:
• This code provides a basic framework and requires further development to fully simulate the
environment, sensor readings, and particle weight updates.
• The move and sense methods for the Robot and Particle classes should be tailored to the speciffc
problem and sensor model.
• The visualization updates the particles and robot position at each step, illustrating the working
of the particle fflter.
This implementation serves as a foundational guideline, and students are encouraged to build upon it,
reffning and adding complexity as needed for their speciffc project requirements.
3 Expected Outcomes
• - Understand the concept and application of Particle Filters in localization.
• - Gain experience in simulating robot movement and sensor readings.
• - Develop skills in probabilistic reasoning and algorithm implementation.
4 Evaluation Criteria
• - Accuracy of the localization (how close the estimated position is to the actual position).
• - Efffciency of the implementation (number of particles used vs. accuracy).
• - Quality of the visualization and ease of understanding the Particle Filter process.
This project provides a balance of theoretical understanding and practical application, making it
an excellent exercise for students to grasp the fundamentals of Particle Filters in robotics         

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值