进程

每个进程在内核中都有一个进程控制块(PCB)来维护进程相关的信息,Linux内核的进程控制块是task_struct结构体

  • 进程id。系统中每个进程有唯一的id,在C语言中用pid_t类型表示,其实就是一个非负整数。
  • 进程的状态,有运行、挂起、停止、僵尸等状态
  • 进程切换时需要保存和恢复的一些CPU寄存器。
  • 描述虚拟地址空间的信息。
  • 描述控制终端的信息。
  • 当前工作目录(Current Working Directory)。
  • umask掩码。
  • 文件描述符表,包含很多指向file结构体的指针。
  • 和信号相关的信息。
  • 用户id和组id。
  • 控制终端、Session和进程组。
  • 进程可以使用的资源上限(Resource Limit)。

FORK函数:

#include <sys/types.h>
#include <unistd.h>

pid_t fork(void);

fork的作用是根据一个现有的进程复制出一个新进程,原来的进程称为父进程(Parent Process),新进程称为子进程(Child Process).

EXEC函数:

#include <unistd.h>

int execl(const char *path, const char *arg, ...);
int execlp(const char *file, const char *arg, ...);
int execle(const char *path, const char *arg, ..., char *const envp[]);
int execv(const char *path, char *const argv[]);
int execvp(const char *file, char *const argv[]);
int execve(const char *path, char *const argv[], char *const envp[]);

这些函数如果调用成功,该进程的用户空间代码和数据完全被新程序替换,从新程序的启动例程开始执行,不再返回,如果调用出错则返回-1,所以exec函数只有出错的返回值而没有成功的返回值。

  • 不带字母p(表示path)的exec函数第一个参数必须是程序的相对路径或绝对路径
  • 带有字母l(表示list)的exec函数要求将新程序的每个命令行参数都当作一个参数传给它,命令行参数的个数是可变的,因此函数原型中有…,…中的最后一个可变参数应该是NULL,起sentinel的作用
  • 对于带有字母v(表示vector)的函数,则应该先构造一个指向各参数的指针数组,然后将该数组的首地址当作参数传给它,数组中的最后一个指针也应该是NULL,就像main函数的argv参数或者环境变量表一样。
  • 对于以e(表示environment)结尾的exec函数,可以把一份新的环境变量表传给它,其他exec函数仍使用当前的环境变量表执行新程序。

WAIT和WAITPID函数:

#include <sys/types.h>
#include <sys/wait.h>

pid_t wait(int *status);
pid_t waitpid(pid_t pid, int *status, int options);

若调用成功则返回清理掉的子进程id,若调用出错则返回-1。父进程调用wait或waitpid时可能会:

  • 阻塞(如果它的所有子进程都还在运行)。
  • 带子进程的终止信息立即返回(如果一个子进程已终止,正等待父进程读取其终止信息)。
  • 出错立即返回(如果它没有任何子进程)。、、

这两个函数的区别是:

  • 如果父进程的所有子进程都还在运行,调用wait将使父进程阻塞,而调用waitpid时如果在options参数中指定WNOHANG可以使父进程不阻塞而立即返回0。
  • wait等待第一个终止的子进程,而waitpid可以通过pid参数指定等待哪一个子进程。

管道:

#include <unistd.h>
int pipe(int filedes[2]);

调用pipe函数时在内核中开辟一块缓冲区(称为管道)用于通信,它有一个读端一个写端,然后通过filedes参数传出给用户程序两个文件描述符,filedes[0]指向管道的读端,filedes[1]指向管道的写端(很好记,就像0是标准输入1是标准输出一样)。所以管道在用户程序看起来就像一个打开的文件,通过read(filedes[0]);或者write(filedes[1]);向这个文件读写数据其实是在读写内核缓冲区。pipe函数调用成功返回0,调用失败返回-1。

  1. 父进程调用pipe开辟管道,得到两个文件描述符指向管道的两端。
  2. 父进程调用fork创建子进程,那么子进程也有两个文件描述符指向同一管道。
  3. 父进程关闭管道读端,子进程关闭管道写端。父进程可以往管道里写,子进程可以从管道里读,管道是用环形队列实现的,数据从写端流入从读端流出,这样就实现了进程间通信
#include <stdlib.h>
#include <unistd.h>
#define MAXLINE 80

int main(void)
{ 
   int n;
   int fd[2]; 
   pid_t pid; 

   char line[MAXLINE];

   if (pipe(fd) < 0){
          perror("pipe");
          exit(1);
   }
   if ((pid = fork()) < 0) {
          perror("fork");
          exit(1); 
   } 
   if (pid > 0) { /* parent */ 
          close(fd[0]); 
          write(fd[1], "hello world\n", 12); 
          wait(NULL);
   } else { /* child */ 
          close(fd[1]); 
          n = read(fd[0], line, MAXLINE);
          write(STDOUT_FILENO, line, n); 
   } 

return 0;
}
标题基于PHP + JavaScript的助眠小程序设计与实现AI更换标题第1章引言介绍助眠小程序的研究背景、意义,以及论文的研究内容和创新点。1.1研究背景与意义阐述助眠小程序在当前社会的重要性和应用价值。1.2国内外研究现状分析国内外在助眠小程序方面的研究进展及现状。1.3论文研究内容与创新点概述论文的主要研究内容和创新之处。第2章相关理论基础介绍助眠小程序设计与实现所涉及的相关理论基础。2.1PHP编程技术阐述PHP编程技术的基本概念、特点和在助眠小程序中的应用。2.2JavaScript编程技术介绍JavaScript编程技术的核心思想、作用及在小程序中的实现方式。2.3小程序设计原理讲解小程序的设计原则、架构和关键技术。第3章助眠小程序需求分析对助眠小程序进行详细的需求分析,为后续设计与实现奠定基础。3.1用户需求调研用户需求调研的过程和方法,总结用户需求。3.2功能需求分析根据用户需求,分析并确定助眠小程序的核心功能和辅助功能。3.3性能需求分析明确助眠小程序在性能方面的要求,如响应速度、稳定性等。第4章助眠小程序设计详细阐述助眠小程序的设计方案,包括整体架构、功能模块和界面设计。4.1整体架构设计给出助眠小程序的整体架构设计思路和实现方案。4.2功能模块设计详细介绍各个功能模块的设计思路和实现方法。4.3界面设计阐述助眠小程序的界面设计风格、布局和交互设计。第5章助眠小程序实现与测试讲解助眠小程序的实现过程,并进行详细的测试与分析。5.1开发环境搭建与配置介绍开发环境的搭建过程和相关配置信息。5.2代码实现与优化详细阐述助眠小程序的代码实现过程,包括关键技术的运用和优化措施。5.3测试与性能分析对助眠小程序进行全面的测试,包括功能测试、性能测试等,并分析测试结果。第6章结论与展望总结论文的研究成果,展望未来的研究方向和应用前景。6.1研究成果总结概括性地总结论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值