已开发项目效果实现截图
同行可拿货,招校园代理 本系统还支持springboot/laravel/express/nodejs/thinkphp/flask/django/ssm/springcloud 微服务分布式等框架








项目介绍
1.用户信息(用户ID,用户名,用户密码,送货住址,联系电话)
2.生鲜商品信息(商品ID,分类ID,商品名,商品单价,商品单位,保质期,备注)
3.商品分类信息(分类ID,分类名)
4.订单信息(订单ID,商品ID,用户ID,商品名,用户名,用户电话,送货地址,订单金额,订单时间,订单状态)
5.购物车信息(用户ID,商品ID,商品总价)
项目介绍
系统权限按管理员,用户这两类涉及用户划分。
(a) 管理员;管理员使用本系统涉到的功能主要有:首页,个人中心,用户管理,商家管理,生鲜信息管理,生鲜分类管理,广告信息管理,生鲜仓库管理,生鲜出库管理,管理等功能
(b) 商家;商家使用本系统涉到的功能主要有:首页,个人中心,生鲜信息管理,广告信息管理,生鲜仓库管理,生鲜出库管理,订单管理等功能
用户主要包括首页、个人中心功能
目前生鲜市场仍有广阔市场尚未开发。当今社会的家庭结构正在由三代同堂的大家庭向三口之家的核心家庭转变,工作人口成为家庭用品的主要决策者和购买者,没有太多的闲暇时间耗费在商品的选购上.繁重的工作压力和竞争压力也直接影响着人们对生鲜产品的购买习惯。特定的采购地点、特定的营业时间、良莠不齐的商品已不能满足快节奏、高质量的工作生活需要,网上生鲜超市平台则可以满足此类用户的需求。
##技术路线
开发语言:Python
框架:flask/django
开发软件:PyCharm/vscode
数据库:mysql
数据库工具:Navicat for mysql
Echarts有着与众不同的特点和惊艳全场的视觉效果,Echarts有以下几种特点:
1、开源软件,并且提供了非常炫酷的图形界面,还有各种直观的数据分析图形
2、使用简单,软件本身已经封装了js,只要引用到位就会有得到完美展示
3、兼容性好,基于html5,有着良好的动画渲染效果。
4、多种数据格式无需转换直接使用,对与直接传入包括二维表,key-value表等多种格式的数据源,通过简单的设置encode属性就可以完成从数据到图形的映射,这使Mysql的数据更容易的被引用
前端开发框架:vue.js
数据库 mysql 版本不限
后端语言框架支持:
1 java(SSM/springboot)-idea/eclipse
2.Nodejs+Vue.js -vscode
3.python(flask/django)–pycharm/vscode
4.php(thinkphp/laravel)-hbuilderx
hadoop集群技术
Hadoop是一个分布式系统的基础框架,用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。Hadoop的框架最核心的设计就是:HDFS和MapReduce。Hadoop实现了一个分布式文件系统,简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的硬件上;而且它提供高吞吐量来访问应用程序的数据,适合那些有着超大数据集的应用程序。HDFS放宽了POSIX的要求,可以以流的形式访问文件系统中的数据。
同时Hadoop有着高可靠性、高拓展性、高效性、高容错性的特点,非常适合于此次题目的使用
django 应用目录结构
project1
|-- migrations //数据移植(迁移)模块
|------- init.py
|-- init.py
|-- admin.py //该应用后台管理系统配置
|-- apps.py //该应用的一些配置 自动生成
|-- models.py //数据模块
|-- tests.py //自动化测试模块 在这里编写测试脚本
|-- views.py //执行响应的代码所在模块 代码逻辑处理主要地点 项目大部分代码在此编写
|–templates //模板 放置模板文件的文件夹 包括HTML css pythonScript的文件夹
核心代码参考示例
预测算法代码如下(示例):
def booksinfoforecast_forecast():
import datetime
if request.method in ["POST", "GET"]:#get、post请求
msg = {'code': normal_code, 'message': 'success'}
#获取数据集
req_dict = session.get("req_dict")
connection = pymysql.connect(**mysql_config)
query = "SELECT author,type,status,wordcount, monthcount FROM booksinfo"
#处理缺失值
data = pd.read_sql(query, connection).dropna()
id = req_dict.pop('id',None)
req_dict.pop('addtime',None)
df = to_forecast(data,req_dict,None)
#创建数据库连接,将DataFrame 插入数据库
connection_string = f"mysql+pymysql://{mysql_config['user']}:{mysql_config['password']}@{mysql_config['host']}:{mysql_config['port']}/{mysql_config['database']}"
engine = create_engine(connection_string)
try:
if req_dict :
#遍历 DataFrame,并逐行更新数据库
with engine.connect() as connection:
for index, row in df.iterrows():
sql = """
INSERT INTO booksinfoforecast (id
,monthcount
)
VALUES (%(id)s
,%(monthcount)s
)
ON DUPLICATE KEY UPDATE
monthcount = VALUES(monthcount)
"""
connection.execute(sql, {'id': id
, 'monthcount': row['monthcount']
})
else:
df.to_sql('booksinfoforecast', con=engine, if_exists='append', index=False)
print("数据更新成功!")
except Exception as e:
print(f"发生错误: {e}")
finally:
engine.dispose() # 关闭数据库连接
return jsonify(msg)
总结
在这个大数据的时代,年轻人都习惯于从互联网上获得信息。我们将更清晰更有效的消息分享给年轻人。提升用户的体验我也希望这次的设计能通过我后期的自主学习把它趋向于完美,成为我的自主创作经验。 原始数据中存在异常值、重复值、系统自动推荐等数据,这部分数据价值含量低、数据结构混乱,严重影响数据挖掘模型的执行效率,导致挖掘结果的偏差,所以进行数据清洗是必不可少的。结合原始数据的具体情况,数据预处理采用文本去重、机械压缩去词和短句删除
(1)网络爬虫模块
(2)关系数据库模块
(3)用户注册登录权限模块
(4)数据统计分析模块
(5)Django后台服务
(6)前端渲染可视化模块
源码lw获取/同行可拿货,招校园代理 :文章底部获取博主联系方式!
需要成品或者定制,加我们的时候,不满意的可以定制
文章最下方名片联系我即可~ 所有项目都经过测试完善,本系统包修改时间和标题,包安装部署运行调试
5681

被折叠的 条评论
为什么被折叠?



