人工智能何以成为“超强大脑”?

本文探讨了算法在推动人工智能发展中的核心作用。从早期符号逻辑推理到深度学习,算法的进步使计算机具备了自我学习和解决问题的能力。深度学习通过多层结构算法提高了特征提取的效率,使得机器能够在视觉、听觉等方面取得显著进展。

人类棋手一滴泪下,为这场似乎一开始便已注定结局的人机围棋大战画上了句号。是什么给了“阿尔法狗”如此高超的棋艺?是什么让人工智能成为“超强大脑”?答案是算法。

  算法是指由计算机执行的一系列独立的指令和动作。从初始状态和初始输入开始,这些指令描述了完整的计算步骤——通过一系列有限的、确切的指令,产生并输出答案和数据,最终止于结束状态。


  人工智能的算法是一套利用机器智能解决问题的复杂手段。过去,我们给计算机下达规则式的指令来解决问题;现在,我们只要告诉计算机想解决的问题,它就可以自行选择算法来解决问题——这便是人工智能带来的根本性变革。

  人工智能最重要的是学习能力,即根据机器以往的经验来不断优化算法。第一次人工智能的浪潮始于上世纪70年代,当时的人工智能算法采用的是符号逻辑推理规则,以实现知识表征。由于缺乏自我学习能力,彼时的人工智能无法解决新领域中出现的问题。第二代人工智能虽然在学习和感知能力上表现更佳,但由于当时的机器学习模型不具备大量吸收训练数据的能力,与人类的水平仍有很大差距。

  大约在10年前,深层与结构化机器学习,或称为深度学习的新范式,让人工智能算法的智能程度越来越高。传统的机器学习方法让电脑学习的“知识”,要由人来设计并输入,因为需要掌握大量的专业知识,导致特征工程成为机器学习的瓶颈。深度学习打破了这一瓶颈,通过多层结构算法,机器对数据集的“特征”进行筛选和提取,通过反复训练,最终获得了提取抽象概念的能力。

  随着神经网络研究的深入,计算机视觉和听觉等让人工智能技术再次迎来发展的拐点,计算机的算法也越来越精进。未来,计算机对自然语言的应用还将大幅提高,电脑可以听懂、读懂人类平常所用的语言,而不仅仅是机器指令。这样,存在于互联网和局域网中的海量信息,都可以成为深度学习的素材。

  通过深度学习,人工智能可以达到近似或超过人类的识别精度。但与人类相比,机器所需要的训练数据、能耗和计算资源却要多得多。从统计学角度看,虽然机器能够达到的识别精度总体上令人印象深刻,但在个体应用中的表现往往不尽如人意。此外,由于目前大多数深度学习模型不具备推理和解释能力,因而无法预测和提前防范严重错误的出现。

  在提高人工智能学习能力的过程中,科学家和研究者们从未放松过对与之相关的伦理道德问题的思考。例如美国电气与电子工程师协会(IEEE)去年便发布了全球首个《人工智能道德准则设计草案》,力求让人工智能更好地为人类服务。相信随着未来在范式、算法和硬件领域不断出现新的突破,人工智能的浪潮将深刻影响人类的生活方式。

Bingdata优网助帮汇聚多平台采集的海量数据,通过大数据技术的分析及预测能力为企业提供智能化的数据分析、运营优化、投放决策、精准  营销、竞品分析等整合营销服务。

北京优网助帮信息技术有限公司(简称优网助帮)是以大数据为基础,并智能应用于整合营销的大数据公司,隶属于亨通集团。Bingdata是其旗下品牌。优网助帮团队主要来自阿里、腾讯、百度、金山、搜狐及移动、电信、联通、华为、爱立信等著名企业的技术大咖,兼有互联网与通信运营商两种基因,为大数据的算法分析提供强大的技术支撑。

 

 

 

先展示下效果 https://pan.quark.cn/s/a4b39357ea24 遗传算法 - 简书 遗传算法的理论是根据达尔文进化论而设计出来的算法: 人类是朝着好的方向(最优解)进化,进化过程中,会自动选择优良基因,淘汰劣等基因。 遗传算法(英语:genetic algorithm (GA) )是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。 进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择、杂交等。 搜索算法的共同特征为: 首先组成一组候选解 依据某些适应性条件测算这些候选解的适应度 根据适应度保留某些候选解,放弃其他候选解 对保留的候选解进行某些操作,生成新的候选解 遗传算法流程 遗传算法的一般步骤 my_fitness函数 评估每条染色体所对应个体的适应度 升序排列适应度评估值,选出 前 parent_number 个 个体作为 待选 parent 种群(适应度函数的值越小越好) 从 待选 parent 种群 中随机选择 2 个个体作为父方和母方。 抽取父母双方的染色体,进行交叉,产生 2 个子代。 (交叉概率) 对子代(parent + 生成的 child)的染色体进行变异。 (变异概率) 重复3,4,5步骤,直到新种群(parentnumber + childnumber)的产生。 循环以上步骤直至找到满意的解。 名词解释 交叉概率:两个个体进行交配的概率。 例如,交配概率为0.8,则80%的“夫妻”会生育后代。 变异概率:所有的基因中发生变异的占总体的比例。 GA函数 适应度函数 适应度函数由解决的问题决定。 举一个平方和的例子。 简单的平方和问题 求函数的最小值,其中每个变量的取值区间都是 [-1, ...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值