62.不同路径
62. 不同路径 - 力扣(LeetCode)
class Solution {
public:
int uniquePaths(int m, int n) {
vector<vector<int>> path(m, vector<int>(n)); // 到达i,j的方法
for(int i = 0; i < n; i++){
path[0][i] = 1;
}
for(int i = 0; i < m; i++){
path[i][0] = 1;
}
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
path[i][j] = path[i - 1][j] + path[i][j - 1];
}
}
return path[m - 1][n - 1];
}
};
63.不同路径 II
63. 不同路径 II - 力扣(LeetCode)
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size(), n = obstacleGrid[0].size();
vector<vector<int> > dp(m, vector<int>(n));
for(int i = 0; i < m; i++){
if(obstacleGrid[i][0] == 1){
break;
}
dp[i][0] = 1;
}
for(int i = 0; i < n; i++){
if(obstacleGrid[0][i] == 1){
break;
}
dp[0][i] = 1;
}
for(int i = 1; i < m; i++){
for(int j = 1; j < n; j++){
if(obstacleGrid[i][j] == 1){ // 无法到达障碍物
dp[i][j] = 0;
}else{
dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
}
}
return dp[m - 1][n - 1];
}
};
343.整数拆分
343. 整数拆分 - 力扣(LeetCode)
class Solution {
public:
int integerBreak(int n) {
vector<int> dp(n + 1, 0); // 维护n的最大拆分结果
for(int i = 2; i <= n; i++){
int curMax = 0;
for(int j = 1; j < i; j++){
curMax = max(curMax, max(j * (i - j), j * dp[i - j]));
}
dp[i] = curMax;
}
return dp[n];
}
};
96.不同的二叉搜索树
96. 不同的二叉搜索树 - 力扣(LeetCode)
class Solution {
public:
int numTrees(int n) {
vector<int> dp(n + 1, 0);
dp[1] = 1;
dp[0] = 1;
for(int i = 2; i < n + 1; i++){
for(int j = 1; j <= i; j++){
dp[i] += dp[j - 1] * dp[i - j]; // 以不同的点为根节点
}
}
return dp[n];
}
};