问题描述
Problems involving the computation of exact
values of very large magnitude and precision are common. For example, the
computation of the national debt is a taxing experience for many computer
systems.
This problem requires that you write a program to compute the exact value of Rn where
R is a real number ( 0.0 < R < 99.999 ) and n is an integer such that 0
< n <= 25.
输入
The input will consist of a set of pairs of values for R and n. The R value will occupy columns 1 through 6, and the n value will be in columns 8 and 9.
输出
The output will consist of one line for each line of input giving the exact value of R^n. Leading zeros should be suppressed in the output. Insignificant trailing zeros must not be printed. Don't print the decimal point if the result is an integer.
Sample Input
95.123 12
0.4321 20
5.1234 15
6.7592 9
98.999 10
1.0100 12
Sample Output
548815620517731830194541.899025343415715973535967221869852721
.00000005148554641076956121994511276767154838481760200726351203835429763013462401
43992025569.928573701266488041146654993318703707511666295476720493953024
29448126.764121021618164430206909037173276672
90429072743629540498.107596019456651774561044010001
1.126825030131969720661201
【算法设计】
输入:以字符串和整数分别输入底和幂
处理:以1000进制方式运算,并用额外的数组记录中间的预算结果
输出:先以字符串方式记录最终结果,然后插入小数点,最后对字符串做裁剪处理已达到预期效果
【代码】