给初学者的RxJava2.0教程(一)

本教程针对RxJava2.0初学者,详细解释了事件流原理,包括Observable和Observer的概念,如何使用subscribe()建立连接,以及Disposable的作用。同时,介绍了线程控制、数据转换、背压处理等高级主题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

讲rxjava讲的比较通俗易懂的文章。

作者:Season_zlc
链接:https://www.jianshu.com/p/464fa025229e

前言

上个月RxJava2正式版发布了,但目前国内的资料还比较少,以前使用过RxJava1只需要看看更新文档就知道怎么使用了,但还有一些以前没用过RxJava的朋友可能就不知道怎么办了,不知道该看RxJava1还是直接跳到RxJava2。所以写下这个教程, 帮助那些没有用过RxJava的朋友入门。

注:如果你觉得写得不好,请直接批评指出。

我先回答这个问题:学习RxJava2需要先学习RxJava1吗?

这个问题就像论坛经常问学Java前需要先学习C语言吗,这里就不引战了!(PHP是世界上最好的语言!!)

答案明显不是,如果你以前学过RxJava1,那么对于RxJava2只需要看看更新了哪些东西就行了,其最核心的思想并没有变化,如果你没学过RxJava1,没有关系,直接学习RxJava2。所以作为一个RxJava2的教程,本文中所有的名词都属于RxJava2中,并不涉及RxJava1。

要在Android中使用RxJava2, 先添加Gradle配置:

    compile 'io.reactivex.rxjava2:rxjava:2.0.1'
    compile 'io.reactivex.rxjava2:rxandroid:2.0.1'

正题

在开始学习之前,先来介绍点原理性的东西。

网上也有很多介绍RxJava原理的文章,通常这些文章都从观察者模式开始,先讲观察者,被观察者,订阅关系巴拉巴拉一大堆,说实话,当我第一次看到这些文章的时候已经被这些名词给绕晕了,用了很长的时间才理清楚它们之间的关系。可能是我太蠢了,境界不够,领会不到那么多高大上的名词.

今天我用两根水管代替观察者和被观察者, 试图用通俗易懂的话把它们的关系解释清楚, 在这里我将从事件流这个角度来说明RxJava的基本工作原理。

先假设有两根水管:

RxJava

上面一根水管为事件产生的水管,叫它上游吧,下面一根水管为事件接收的水管叫它下游吧。

两根水管通过一定的方式连接起来,使得上游每产生一个事件,下游就能收到该事件。注意这里和官网的事件图是反过来的, 这里的事件发送的顺序是先1,后2,后3这样的顺序, 事件接收的顺序也是先1,后2,后3的顺序, 我觉得这样更符合我们普通人的思维, 简单明了.

这里的上游下游就分别对应着RxJava中的ObservableObserver,它们之间的连接就对应着subscribe(),因此这个关系用RxJava来表示就是:

        //创建一个上游 Observable:
        Observable<Integer> observable = Observable.create(new ObservableOnSubscribe<Integer>() {
            @Override
            public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
                emitter.onNext(1);
                emitter.onNext(2);
                emitter.onNext(3);
                emitter.onComplete();
            }
        });
        //创建一个下游 Observer
        Observer<Integer> observer = new Observer<Integer>() {
            @Override
            public void onSubscribe(Disposable d) {
                Log.d(TAG, "subscribe");
            }

            @Override
            public void onNext(Integer value) {
                Log.d(TAG, "" + value);
            }

            @Override
            public void onError(Throwable e) {
                Log.d(TAG, "error");
            }

            @Override
            public void onComplete() {
                Log.d(TAG, "complete");
            }
        };
        //建立连接
        observable.subscribe(observer);  

这个运行的结果就是:

12-02 03:37:17.818 4166-4166/zlc.season.rxjava2demo D/TAG: subscribe
12-02 03:37:17.819 4166-4166/zlc.season.rxjava2demo D/TAG: 1
12-02 03:37:17.819 4166-4166/zlc.season.rxjava2demo D/TAG: 2
12-02 03:37:17.819 4166-4166/zlc.season.rxjava2demo D/TAG: 3
12-02 03:37:17.819 4166-4166/zlc.season.rxjava2demo D/TAG: complete

注意: 只有当上游和下游建立连接之后, 上游才会开始发送事件. 也就是调用了subscribe() 方法之后才开始发送事件.

把这段代码连起来写就成了RxJava引以为傲的链式操作:

        Observable.create(new ObservableOnSubscribe<Integer>() {
            @Override
            public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
                emitter.onNext(1);
                emitter.onNext(2);
                emitter.onNext(3);
                emitter.onComplete();
            }
        }).subscribe(new Observer<Integer>() {
            @Override
            public void onSubscribe(Disposable d) {
                Log.d(TAG, "subscribe");
            }

            @Override
            public void onNext(Integer value) {
                Log.d(TAG, "" + value);
            }

            @Override
            public void onError(Throwable e) {
                Log.d(TAG, "error");
            }

            @Override
            public void onComplete() {
                Log.d(TAG, "complete");
            }
        });

接下来解释一下其中两个陌生的玩意:ObservableEmitterDisposable.

ObservableEmitter: Emitter是发射器的意思,那就很好猜了,这个就是用来发出事件的,它可以发出三种类型的事件,通过调用emitter的onNext(T value)onComplete()onError(Throwable error)就可以分别发出next事件、complete事件和error事件。

但是,请注意,并不意味着你可以随意乱七八糟发射事件,需要满足一定的规则:

  • 上游可以发送无限个onNext, 下游也可以接收无限个onNext.
  • 当上游发送了一个onComplete后, 上游onComplete之后的事件将会继续发送, 而下游收到onComplete事件之后将不再继续接收事件.
  • 当上游发送了一个onError后, 上游onError之后的事件将继续发送, 而下游收到onError事件之后将不再继续接收事件.
  • 上游可以不发送onComplete或onError.
  • 最为关键的是onComplete和onError必须唯一并且互斥, 即不能发多个onComplete, 也不能发多个onError, 也不能先发一个onComplete, 然后再发一个onError, 反之亦然

注: 关于onComplete和onError唯一并且互斥这一点, 是需要自行在代码中进行控制, 如果你的代码逻辑中违背了这个规则, **并不一定会导致程序崩溃. ** 比如发送多个onComplete是可以正常运行的, 依然是收到第一个onComplete就不再接收了, 但若是发送多个onError, 则收到第二个onError事件会导致程序会崩溃.

以上几个规则用示意图表示如下:

 示意图
只发送onNext事件

next

发送onComplete事件

complete

发送onError事件

error

介绍了ObservableEmitter, 接下来介绍Disposable, 这个单词的字面意思是一次性用品,用完即可丢弃的. 那么在RxJava中怎么去理解它呢, 对应于上面的水管的例子, 我们可以把它理解成两根管道之间的一个机关, 当调用它的dispose()方法时, 它就会将两根管道切断, 从而导致下游收不到事件.

注意: 调用dispose()并不会导致上游不再继续发送事件, 上游会继续发送剩余的事件.

来看个例子, 我们让上游依次发送1,2,3,complete,4,在下游收到第二个事件之后, 切断水管, 看看运行结果:

        Observable.create(new ObservableOnSubscribe<Integer>() {
            @Override
            public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
                Log.d(TAG, "emit 1");
                emitter.onNext(1);
                Log.d(TAG, "emit 2");
                emitter.onNext(2);
                Log.d(TAG, "emit 3");
                emitter.onNext(3);
                Log.d(TAG, "emit complete");
                emitter.onComplete();
                Log.d(TAG, "emit 4");
                emitter.onNext(4);
            }
        }).subscribe(new Observer<Integer>() {
            private Disposable mDisposable;
            private int i;

            @Override
            public void onSubscribe(Disposable d) {
                Log.d(TAG, "subscribe");
                mDisposable = d;
            }

            @Override
            public void onNext(Integer value) {
                Log.d(TAG, "onNext: " + value);
                i++;
                if (i == 2) {
                    Log.d(TAG, "dispose");
                    mDisposable.dispose();
                    Log.d(TAG, "isDisposed : " + mDisposable.isDisposed());
                }
            }

            @Override
            public void onError(Throwable e) {
                Log.d(TAG, "error");
            }

            @Override
            public void onComplete() {
                Log.d(TAG, "complete");
            }
        });

运行结果为:

12-02 06:54:07.728 7404-7404/zlc.season.rxjava2demo D/TAG: subscribe
12-02 06:54:07.728 7404-7404/zlc.season.rxjava2demo D/TAG: emit 1
12-02 06:54:07.728 7404-7404/zlc.season.rxjava2demo D/TAG: onNext: 1
12-02 06:54:07.728 7404-7404/zlc.season.rxjava2demo D/TAG: emit 2
12-02 06:54:07.728 7404-7404/zlc.season.rxjava2demo D/TAG: onNext: 2
12-02 06:54:07.728 7404-7404/zlc.season.rxjava2demo D/TAG: dispose
12-02 06:54:07.728 7404-7404/zlc.season.rxjava2demo D/TAG: isDisposed : true
12-02 06:54:07.728 7404-7404/zlc.season.rxjava2demo D/TAG: emit 3
12-02 06:54:07.728 7404-7404/zlc.season.rxjava2demo D/TAG: emit complete
12-02 06:54:07.728 7404-7404/zlc.season.rxjava2demo D/TAG: emit 4

从运行结果我们看到, 在收到onNext 2这个事件后, 切断了水管, 但是上游仍然发送了3, complete, 4这几个事件, 而且上游并没有因为发送了onComplete而停止. 同时可以看到下游的onSubscribe()方法是最先调用的.

Disposable的用处不止这些, 后面讲解到了线程的调度之后, 我们会发现它的重要性. 随着后续深入的讲解, 我们会在更多的地方发现它的身影.

另外, subscribe()有多个重载的方法:

    public final Disposable subscribe() {}
    public final Disposable subscribe(Consumer<? super T> onNext) {}
    public final Disposable subscribe(Consumer<? super T> onNext, Consumer<? super Throwable> onError) {} 
    public final Disposable subscribe(Consumer<? super T> onNext, Consumer<? super Throwable> onError, Action onComplete) {}
    public final Disposable subscribe(Consumer<? super T> onNext, Consumer<? super Throwable> onError, Action onComplete, Consumer<? super Disposable> onSubscribe) {}
    public final void subscribe(Observer<? super T> observer) {}

最后一个带有Observer参数的我们已经使用过了,这里对其他几个方法进行说明.

  • 不带任何参数的subscribe() 表示下游不关心任何事件,你上游尽管发你的数据去吧, 老子可不管你发什么.
  • 带有一个Consumer参数的方法表示下游只关心onNext事件, 其他的事件我假装没看见, 因此我们如果只需要onNext事件可以这么写:
        Observable.create(new ObservableOnSubscribe<Integer>() {
            @Override
            public void subscribe(ObservableEmitter<Integer> emitter) throws Exception {
                Log.d(TAG, "emit 1");
                emitter.onNext(1);
                Log.d(TAG, "emit 2");
                emitter.onNext(2);
                Log.d(TAG, "emit 3");
                emitter.onNext(3);
                Log.d(TAG, "emit complete");
                emitter.onComplete();
                Log.d(TAG, "emit 4");
                emitter.onNext(4);
            }
        }).subscribe(new Consumer<Integer>() {
            @Override
            public void accept(Integer integer) throws Exception {
                Log.d(TAG, "onNext: " + integer);
            }
        });
  • 其他几个方法同理, 这里就不一一解释了.


 

给初学者的RxJava2.0教程(二)   

线程控制

.subscribeOn()          .observeOn() 

  • Schedulers.io() 代表io操作的线程, 通常用于网络,读写文件等io密集型的操作
  • Schedulers.computation() 代表CPU计算密集型的操作, 例如需要大量计算的操作
  • Schedulers.newThread() 代表一个常规的新线程
  • AndroidSchedulers.mainThread() 代表Android的主线程

ps :如果在请求的过程中Activity已经退出了, 这个时候如果回到主线程去更新UI, 那么APP肯定就崩溃了, 怎么办呢, 上一节我们说到了Disposable , 说它是个开关, 调用它的dispose()方法时就会切断水管, 使得下游收不到事件, 既然收不到事件, 那么也就不会再去更新UI了. 因此我们可以在Activity中将这个Disposable 保存起来, 当Activity退出时, 切断它即可.

那如果有多个Disposable 该怎么办呢, RxJava中已经内置了一个容器CompositeDisposable, 每当我们得到一个Disposable时就调用CompositeDisposable.add()将它添加到容器中, 在退出的时候, 调用CompositeDisposable.clear() 即可切断所有的水管.


给初学者的RxJava2.0教程(三)

优雅的解决嵌套请求, 只需要用flatMap转换一下就行

Map              一对一转换

FlatMap       多个发送        无序

concatMap  多个多个        有序


给初学者的RxJava2.0教程(四)

合并多个请求的返回数据才刷新界面 

Zip       多个Observable  合一个     有序

两个observable需要在不同的线程 才有意义


给初学者的RxJava2.0教程(五)

Backpressure  背压产生的原因  “水缸被撑破“

同步和异步的区别仅仅在于是否有 “水缸"


给初学者的RxJava2.0教程(六)

通过限制上游事件发送速度,可以缓解背压现象

filter   过滤事件(事件会丢失)

sample 每隔指定的时间就从上游中取出一个事件发送给下游(事件并不会丢失)


给初学者的RxJava2.0教程(七)

Flowable 流动性,解决背压方案

同步的代码, 为什么上游发送第一个事件后下游就抛出了MissingBackpressureException异常, 这是因为下游没有调用request, 上游就认为下游没有处理事件的能力, 而这又是一个同步的订阅, 既然下游处理不了, 那上游不可能一直等待吧, 如果是这样, 万一这两根水管工作在主线程里, 界面不就卡死了吗, 因此只能抛个异常来提醒我们. 那如何解决这种情况呢, 很简单啦, 下游直接调用request(Long.MAX_VALUE)就行了, 或者根据上游发送事件的数量来request就行了, 比如这里request(3)就可以了.


给初学者的RxJava2.0教程(八)

FLowable 默认最多存128个事件,如果超过报错MissingBackpressureException,可以设置的更大一些,但是有oom的风险。

FLowable的对应的就是BackpressureStrategy.DROPBackpressureStrategy.LATEST这两种策略 。Drop就是直接把存不下的事件丢弃,Latest就是只保留最新的事件, 来看看它们的实际效果吧.


 FLowable相比Observable, 在性能方面有些不足, 毕竟FLowable内部为了实现响应式拉取做了更多的操作, 性能有所丢失也是在所难免


给初学者的RxJava2.0教程(九)

 

给初学者的RxJava2.0教程(十)

利用RxJava内部的RxJavaPlugins 处理 API请求错误的方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值