redis面试题

缓存穿透、缓存击穿、缓存雪崩解决方案?

缓存穿透:指查询一个一定不存在的数据,如果从存储层查不到数据则不写入缓存,这将导致这个不存在的数据每次请求都要到 DB 去查询,可能导致 DB 挂掉。
解决方案:
1.查询返回的数据为空,仍把这个空结果进行缓存,但过期时间会比较短;
2.布隆过滤器:将所有可能存在的数据哈希到一个足够大的 bitmap 中,一个一定不存在的数据会被这个 bitmap 拦截掉,从而避免了对 DB 的查询。

缓存击穿:对于设置了过期时间的 key,缓存在某个时间点过期的时候,恰好这时间点对这个 Key 有大量的并发请求过来,这些请求发现缓存过期一般都会从后端 DB 加载数据并回设到缓存,这个时候大并发的请求可能会瞬间把 DB 压垮。
解决方案:
1.使用互斥锁:当缓存失效时,不立即去 load db,先使用如 Redis 的 setnx 去设置一个互斥锁,当操作成功返回时再进行 load db 的操作并回设缓存,否则重试 get 缓存的方法。
2.永远不过期:物理不过期,但逻辑过期(后台异步线程去刷新)。

缓存雪崩:设置缓存时采用了相同的过期时间,导致缓存在某一时刻同时失效,请求全部转发到 DB,DB 瞬时压力过重雪崩。与缓存击穿的区别:雪崩是很多 key,击穿是某一个key 缓存。
解决方案:
将缓存失效时间分散开,比如可以在原有的失效时间基础上增加一个随机值,比如 1-5 分钟随机,这样每一个缓存的过期时间的重复率就会降低,就很难引发集体失效的事件。

Redis 当中有哪些数据结构
字符串 String、字典 Hash、列表 List、集合 Set、有序集合 SortedSet。

主从数据库不一致如何解决
场景描述,对于主从库,读写分离,如果主从库更新同步有时差,就会导致主从库数据的不一致
1、忽略这个数据不一致,在数据一致性要求不高的业务下,未必需要时时一致性
2、强制读主库,使用一个高可用的主库,数据库读写都在主库,添加一个缓存,提升数据读取的性能。
3、选择性读主库,添加一个缓存,用来记录必须读主库的数据,将哪个库,哪个表,哪个主键,作为缓存的 key,设置缓存失效的时间为主从库同步的时间,如果缓存当中有这个数据,直接读取主库,如果缓存当中没有这个主键,就到对应的从库中读取。

缓存与数据库不一致怎么办
假设采用的主存分离,读写分离的数据库,如果一个线程 A 先删除缓存数据,然后将数据写入到主库当中,这个时候,主库和从库同步没有完成,线程 B 从缓存当中读取数据失败,从从库当中读取到旧数据,然后更新至缓存,这个时候,缓存当中的就是旧的数据。
发生上述不一致的原因在于,主从库数据不一致问题,加入了缓存之后,主从不一致的时间被拉长了
处理思路:在从库有数据更新之后,将缓存当中的数据也同时进行更新,即当从库发生了数据更新之后,向缓存发出删除,淘汰这段时间写入的旧数据。

主从复制模式下,主挂了怎么办?
redis 提供了哨兵模式(高可用)
何谓哨兵模式?就是通过哨兵节点进行自主监控主从节点以及其他哨兵节点,发现主节点故障时自主进行故障转移。
哨兵模式实现原理?(2.8 版本或更高才有)
1.三个定时监控任务
1.1 每隔 10s,每个 S 节点(哨兵节点)会向主节点和从节点发送 info 命令获取最新的拓扑结构
1.2 每隔 2s,每个 S 节点会向某频道上发送该 S 节点对于主节点的判断以及当前 Sl 节点的信息,同时每个 Sentinel 节点也会订阅该频道,来了解其他 S 节点以及它们对主节点的判断(做客观下线依据)
1.3 每隔 1s,每个 S 节点会向主节点、从节点、其余 S 节点发送一条 ping 命令做一次心跳检测(心跳检测机制),来确认这些节点当前是否可达
2.主客观下线:
2.1 主观下线:根据第三个定时任务对没有有效回复的节点做主观下线处理
2.2 客观下线:若主观下线的是主节点,会咨询其他 S 节点对该主节点的判断,超过半数,对该主节点做客观下线
3.选举出某一哨兵节点作为领导者,来进行故障转移。
选举方式:raft算法。每个 S 节点有一票同意权,哪个 S 节点做出主观下线的时候,就会询问其他 S 节点是否同意其为领导者。获得半数选票的则成为领导者。基本谁先做出客观下线,谁成为领导者。
4.故障转移:
选举新主节点流程

2021年2月26日
主从复制
在这里插入图片描述

Redis的持久化

RDB(Redis DataBase)
单独**创建(fork)一个子进程来进行持久化,会先将数据写入到一个临时文件中,待持久化过程都结束了,再用这个临时文件替换上次持久化好的文件。**整个过程中,主进程是不进行任何IO操作的。
这就确保了极高的性能。如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那RDB方式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢失。

AOF(Append Only File)
以日志的形式来记录每个写操作,将Redis执行过的所有指令记录下来(读操作不记录),只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构建数据,换言之,redis重启的话就根据日志文件的内容将写指令从前到后执行一次以完成数据的恢复工作

总结
1、RDB 持久化方式能够在指定的时间间隔内对你的数据进行快照存储
2、AOF 持久化方式记录每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始的数据,AOF命令以Redis 协议追加保存每次写的操作到文件末尾,Redis还能对AOF文件进行后台重写,使得AOF文件的体积不至于过大。
3、只做缓存,如果你只希望你的数据在服务器运行的时候存在,你也可以不使用任何持久化
4、同时开启两种持久化方式在这种情况下,当redis重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF文件保存的数据集要比RDB文件保存的数据集要完整。
RDB 的数据不实时,同时使用两者时服务器重启也只会找AOF文件,那要不要只使用AOF呢?作者建议不要,因为RDB更适合用于备份数据库(AOF在不断变化不好备份),快速重启,而且不会有AOF可能潜在的Bug,留着作为一个万一的手段。
5、性能建议
因为RDB文件只用作后备用途,建议只在Slave上持久化RDB文件,而且只要15分钟备份一次就够了,只保留 save 900 1 这条规则。
如果Enable AOF ,好处是在最恶劣情况下也只会丢失不超过两秒数据,启动脚本较简单只load自己的AOF文件就可以了,代价一是带来了持续的IO,二是AOF rewrite 的最后将 rewrite 过程中产生的新数据写到新文件造成的阻塞几乎是不可避免的。只要硬盘许可,应该尽量减少AOF rewrite的频率,AOF重写的基础大小默认值64M太小了,可以设到5G以上,默认超过原大小100%大小重写可以改到适当的数值。
如果不Enable AOF ,仅靠 Master-Slave Repllcation 实现高可用性也可以,能省掉一大笔IO,也减少了rewrite时带来的系统波动。代价是如Master/Slave 同时倒掉,会丢失十几分钟的数据,启动脚本也要比较两个 Master/Slave 中的 RDB文件,载入较新的那个,微博就是这种架构。

需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕“需求响应动态冰蓄冷系统与需求响应策略的优化研究”展开,基于Matlab代码实现,重点探讨了冰蓄冷系统在电力需求响应背景下的动态建模与优化调度策略。研究结合实际电力负荷与电价信号,构建系统能耗模型,利用优化算法对冰蓄冷系统的运行策略进行求解,旨在降低用电成本、平衡电网负荷,并提升能源利用效率。文中还提及该研究为博士论文复现,涉及系统建模、优化算法应用与仿真验证等关键技术环节,配套提供了完整的Matlab代码资源。; 适合人群:具备一定电力系统、能源管理或优化算法基础,从事科研或工程应用的研究生、高校教师及企业研发人员,尤其适合开展需求响应、综合能源系统优化等相关课题研究的人员。; 使用场景及目标:①复现博士论文中的冰蓄冷系统需求响应优化模型;②学习Matlab在能源系统建模与优化中的具体实现方法;③掌握需求响应策略的设计思路与仿真验证流程,服务于科研项目、论文写作或实际工程方案设计。; 阅读建议:建议结合提供的Matlab代码逐模块分析,重点关注系统建模逻辑与优化算法的实现细节,按文档目录顺序系统学习,并尝试调整参数进行仿真对比,以深入理解不同需求响应策略的效果差异。
综合能源系统零碳优化调度研究(Matlab代码实现)内容概要:本文围绕“综合能源系统零碳优化调度研究”,提供了基于Matlab代码实现的完整解决方案,重点探讨了在高比例可再生能源接入背景下,如何通过优化调度实现零碳排放目标。文中涉及多种先进优化算法(如改进遗传算法、粒子群优化、ADMM等)在综合能源系统中的应用,涵盖风光场景生成、储能配置、需求响应、微电网协同调度等多个关键技术环节,并结合具体案例(如压缩空气储能、光热电站、P2G技术等)进行建模与仿真分析,展示了从问题建模、算法设计到结果验证的全流程实现过程。; 适合人群:具备一定电力系统、能源系统或优化理论基础,熟悉Matlab/Simulink编程,从事新能源、智能电网、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①开展综合能源系统低碳/零碳调度的科研建模与算法开发;②复现高水平期刊(如SCI/EI)论文中的优化模型与仿真结果;③学习如何将智能优化算法(如遗传算法、灰狼优化、ADMM等)应用于实际能源系统调度问题;④掌握Matlab在能源系统仿真与优化中的典型应用方法。; 阅读建议:建议结合文中提供的Matlab代码与网盘资源,边学习理论模型边动手调试程序,重点关注不同优化算法在调度模型中的实现细节与参数设置,同时可扩展应用于自身研究课题中,提升科研效率与模型精度。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值