NLPIR技术运用知识图谱技术应用于智能金融

在金融领域,NLP技术的作用主要在于自动从海量的宏观、行业、微观资讯中发现、分析并整合与各类决策相关的信息。

知识图谱在金融中有多项应用,首先通过信息检索技术获取相关文本,然后借语义分析技术从非结构化文本中提取结构化的信息,最后将这些信息加以提炼,并且使之关联到未来可能的发展趋势,从而为预测和决策提供有价值的及时信息。

智能金融应用是通过知识图谱相关技术从招股书、年报、公司公告、券商研究报告、新闻等半结构化表格和非结构化文本数据中批量自动抽取公司的股东、子公司、供应商、客户、合作伙伴、竞争对手等信息,构建出公司的知识图谱。在某个宏观经济事件或者企业相关事件发生的时候,券商分析师、交易员、基金公司基金经理等投资研究人员可以通过此图谱做更深层次的分析和更好的企业决策。

KGB知识图谱功能很好的发挥了知识图谱构建优势,能够实现以下几种功能:

  1. 文档解析: KGB知识图谱引擎,可轻松解析多种格式与版本文档:TXT、DOC、EXCEL、PPT、PDF、XML等。尤其是PDF文件,可直接解析输出为word格式文件,保留文件中表格与文字格式等重要信息。对于图片信息,OCR可自动识别并抽取图片中的文字信息。
  2. 知识抽取:KGB知识图谱引擎,可从结构化表格与非结构化文本中自适应识别并抽取关键知识(主体、客体、时间、地点、金额、条款等),准确率高达90%,实现知识的快速生成。
  3. 知识关联:KGB知识图谱引擎深入挖掘知识关联,将一个个知识实体链接为具有完整意义的知识事实。并具有强大的知识推理能力,推理出暗含的知识与结论,丰富知识图谱。
  4. 知识较验:KGB知识图谱加工厂能够对知识质量智能校验,包括对多种知识错误与冲突进行自动智能核查与修正,更有知识工程师进行知识精准校验,保证知识图谱的准确性。

涉及到具体的使用,KGB知识图谱兼具以下特色:
1、跨领域可扩展:知识图谱加工厂具有通用的图谱构建引擎。知识抽取、知识关联与质量核查过程不依赖特定业务知识,结合用户知识图谱构建的需求,可以快速构建用户领域知识图谱。
2、知识质量智能核查:知识图谱加工厂实现对多种知识错误与冲突的智能核查与校验,并对知识库进行实时自动更新,保证知识图谱准确性。
3、人机结合的服务:知识图谱加工场人机构成:90%机器+10%的人工,只需要提供语料,就可以快速得到对应的知识图谱构建成果。

提供了基于BP(Back Propagation)神经网络结合PID(比例-积分-微分)控制策略的Simulink仿真模型。该模型旨在实现对杨艺所著论文《基于S函数的BP神经网络PID控制器及Simulink仿真》中的理论进行实践验证。在Matlab 2016b环境下开发,经过测试,确保能够正常运行,适合学习研究神经网络在控制系统中的应用。 特点 集成BP神经网络:模型中集成了BP神经网络用于提升PID控制器的性能,使之能更好地适应复杂控制环境。 PID控制优化:利用神经网络的自学习能力,对传统的PID控制算法进行了智能调整,提高控制精度稳定性。 S函数应用:展示了如何在Simulink中通过S函数嵌入MATLAB代码,实现BP神经网络的定制化逻辑。 兼容性说明:虽然开发于Matlab 2016b,但理论上兼容后续版本,可能会需要调整少量配置以适配不同版本的Matlab。 使用指南 环境要求:确保你的电脑上安装有Matlab 2016b或更高版本。 模型加载: 下载本仓库到本地。 在Matlab中打开.slx文件。 运行仿真: 调整模型参数前,请先熟悉各模块功能输入输出设置。 运行整个模型,观察控制效果。 参数调整: 用户可以自由调节神经网络的层数、节点数以及PID控制器的参数,探索不同的控制性能。 学习修改: 通过阅读模型中的注释查阅相关文献,加深对BP神经网络与PID控制结合的理解。 如需修改S函数内的MATLAB代码,建议有一定的MATLAB编程基础。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值