KGB知识图谱开拓行业应用新展图

KGB知识图谱在保险、公共安全等行业广泛应用,通过文档解析、知识抽取、知识关联和知识校验等功能,实现高质量知识图谱构建。其特色包括跨领域可扩展性、知识质量智能核查及高效人机结合服务。

知识图谱的应用对技术本身也提出了高要求,KGB知识图谱现在已经在保险行业,为公司分析上市数据等行业得以广泛应用,知识图谱能够在应用中发挥优势主要体现在哪里呢?
(1) 目标的动态性:考察知识图谱的三个重要方面包括目标的动态性。比如根据已有的知识图谱模型,能否一个在人工不干预的情况下,自动识别出同类事物;当一名影星再婚之后,是否可以在人工不干预的情况下,自动识别他的新配偶。
(2) 目标的多样化:知识图谱中的目标类别是否明确的定义了很多种,例如人物知识图谱是否能根据职业角色将人物定义划分为几百种,并自动识别每一个新目标的职业角色;当职业角色带来特定的关系限制时,能否自动补全这些关系,例如当自动识别出一个人物是教授时,也自动识别出他的研究领域、指导学生和开设课程等。
(3) 关系的细粒度分析:除了目标因为类型不同存在多样化的情形之外,目标之间的关系也可能存在细粒度的不同。知识图谱能否准确的细分处理这些关系,并自动识别新的关系。例如,人物之间的关系有很多种,父子,师生,表亲,同学,同事,上下级,朋友,等等,人物知识图谱是否能将目标之间的关系细化至此。
从这些不同的技术维度来看,上述场景对知识图谱的质量有着不同的要求。比如,企业内部的信息检索可能因为待检索文档相对固定,而对目标是否动态、目标和关系是否多样化细粒度基本没有要求;而数据决策因为要全面考虑不同的因素对最终结果的综合影响,在这三个方面都有很高的要求。由此可见,行业知识库和数据决策这些场景所建设的知识图谱的质量水平是有着较高要求的。
KGB知识图谱凭借其在知识图谱的构建,更新方面的技术优势,现在已经在公共安全,企业文件内容核查等得以广泛应用。KGB知识图谱现已实现以下功能:1.文档解析:KGB知识图谱引擎,可轻松解析多种格式与版本文档:TXT、DOC、EXCEL、PPT、PDF、XML等。尤其是PDF文件,可直接解析输出为word格式文件,保留文件中表格与文字格式等重要信息。对于图片信息,OCR可自动识别并抽取图片中的文字信息。2. 知识抽取:KGB知识图谱引擎,可从结构化表格与非结构化文本中自适应识别并抽取关键知识(主体、客体、时间、地点、金额、条款等),准确率高达90%,实现知识的快速生成。3、知识关联:KGB知识图谱引擎深入挖掘知识关联,将一个个知识实体链接为具有完整意义的知识事实。并具有强大的知识推理能力,推理出暗含的知识与结论,丰富知识图谱。4、知识较验:KGB知识图谱加工厂能够对知识质量智能校验,包括对多种知识错误与冲突进行自动智能核查与修正,更有知识工程师进行知识精准校验,保证知识图谱的准确性。
在行业应用方面,KGB知识图谱具有以下特色:1、跨领域可扩展:知识图谱加工厂具有通用的图谱构建引擎。知识抽取、知识关联与质量核查过程不依赖特定业务知识,结合用户知识图谱构建的需求,可以快速构建用户领域知识图谱。2、知识质量智能核查:知识图谱加工厂实现对多种知识错误与冲突的智能核查与校验,并对知识库进行实时自动更新,保证知识图谱准确性。3、人机结合的服务:知识图谱加工场人机构成:90%机器+10%的人工,只需要提供语料,就可以快速得到对应的知识图谱构建成果。

【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)内容概要:本文研究了一种基于机器学习(ML)和离散小波变换(DWT)的电能质量扰动分类方法,并提供了Matlab实现方案。首先利用DWT对电能质量信号进行多尺度分解,提取信号的时频域特征,有效捕捉电压暂降、暂升、中断、谐波、闪变等常见扰动的关键信息;随后结合机器学习分类器(如SVM、BP神经网络等)对提取的特征进行训练与分类,实现对不同类型扰动的自动识别与准确区分。该方法充分发挥DWT在信号去噪与特征提取方面的优势,结合ML强大的模式识别能力,提升了分类精度与鲁棒性,具有较强的实用价值。; 适合人群:电气工程、自动化、电力系统及其自动化等相关专业的研究生、科研人员及从事电能质量监测与分析的工程技术人员;具备一定的信号处理基础和Matlab编程能力者更佳。; 使用场景及目标:①应用于智能电网中的电能质量在线监测系统,实现扰动类型的自动识别;②作为高校或科研机构在信号处理、模式识别、电力系统分析等课程的教学案例或科研实验平台;③目标是提高电能质量扰动分类的准确性与效率,为后续的电能治理与设备保护提供决策依据。; 阅读建议:建议读者结合Matlab代码深入理解DWT的实现过程与特征提取步骤,重点关注小波基选择、分解层数设定及特征向量构造对分类性能的影响,并尝试对比不同机器学习模型的分类效果,以全面掌握该方法的核心技术要点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值