飞蛾扑火算法

MFO的过程如下:
1.初始化飞蛾种群
2.对飞蛾种群进行适应度评价
3.重复如下过程直到达到停止标准:
3.1自适应更新火焰个数n,当迭代次数为1时,飞蛾个数即为火焰个数
3.2对飞蛾种群适应度进行排序,取出适应度较好的n个飞蛾作为火焰
3.3更新飞蛾的搜索参数。
3.4根据每只飞蛾对应的火焰与飞行参数更新飞蛾的位置
4.输出所得最优解(火焰)
在这里插入图片描述
function [Best_flame_score,Best_flame_pos,Convergence_curve]=MFO(N,Max_iteration,lb,ub,dim,fobj)

for t=1:Max_iteration
更新火焰数量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值