ArrayList
ArrayList是基于动态数组实现的,支持随机访问,它继承自AbstractiList,RandomAccess标识着它支持随机访问
public class ArrayList<E> extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, java.io.Serializable
ArrayList的默认大小为10
private static final int DEFAULT_CAPACITY = 10;
它有如下三种构造方式:
ArrayList arr = new ArrayList();//默认大小为10
ArrayList arr1 = new ArrayList(5);//创建一个容量为5的ArrayList
ArrayList arr2 = new ArrayList(Collection<? extends E> c);//构造一个包含指定 collection 的元素的列表,这些元素是按照该 collection 的迭代器返回它们的顺序排列的。
但是我们看接下来的源码
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
public ArrayList(){
super();
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
当我们使用无参的构造函数去构造一个ArrayList的时候,他会给elementData一个值,也就是说这个时候这个elementData数组还是没有容量的,并不是说创建之初容量就为默认容量10,那么它是在什么时候将容量扩容为10的呢,答案是加进第一个元素的时候
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
可以看到在ensureCapacityInternal中,有判断此时elementData数组的一个状态,如果值为DEFAULTCAPACITY_EMPTY_ELEMENTDATA就会将容量设为默认容量
扩容
在ArrayList增加元素的时候,会使用ensureCapacityInternal()来确保容量足够,用grow()来扩容数组,扩容为原来的1.5倍
public boolean add(E e) {
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
private void ensureCapacityInternal(int minCapacity) {
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
private void ensureExplicitCapacity(int minCapacity) {
modCount++;
// overflow-conscious code
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
我们来捋一捋这个顺序
1、增加元素的时候,先用ensureCapacityInternal()确保容量足够,首先这个方法会判断你创建的是否是默认容量的ArrayList,然后调用ensureExplicitCapacity(),将所需容量大小传进去当参数
2、ensureExplicitCapacity()方法将modCount加1,这是个快速失败检查的标志,后面会讲到,同时在这个方法里面判断是否超过了容量大小,超了就执行grow()方法
3、我们看到grow()方法有两个判断,我们来分析一下
首先,这里将数组容量扩容到原本的1.5倍,oldCapacity>>1相当于oldCapacity/2;
int newCapacity = oldCapacity + (oldCapacity >> 1);
这是第一个判断,意思是如果扩容后的新容量仍然达不到要求的话,就将所需容量作为新容量
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
这是第二个判断,意思是如果扩容后的新容量超过了ArrayList的最大容量,就会调用hugeCapacity()方法,并传入所需容量作为参数,MAX_ARRAY_SIZE值为Integer.MAX_VALUE- 8,至于为什么是比整数的最大值小8,这就交给大神们去解答吧
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
最后,注意这里用了copyOf()来创建新的数组,所以每一次扩容对系统的耗费都很大,我们应该尽量在最开始的时候就给定大概的容量,减少扩容的次数
elementData = Arrays.copyOf(elementData, newCapacity);
删除元素
ArrayList删除元素的整体思路是用System.arraycopy()方法将index+1位置上的元素以及之后的元素前移,可以看出ArrayList删除元素的耗费是非常大的
public E remove(int index) {
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index, numMoved);
elementData[--size] = null; // clear to let GC do its work
return oldValue;
}
Fail-Fast
Fail-Fast即快速失败机制,主要通过属性modCount来判断ArrayList的结构是否被修改,添加或者删除至少一个元素的所有操作,或者是调整内部数组的大小,都会改变ArrayList的结构,但是仅仅只是设置元素的值不算结构发生变化。
Fail-Fast机制是在进行序列化或者迭代等操作时,比较前后的modCount是否一样,如果改变了需要抛出 ConcurrentModificationException。
为什么要Fail-Fast机制呢,因为ArrayList不是线程安全的,如果有两个线程同时对一个ArrayList做修改的时候,每一方都是不知情的,这个时候就需要Fail-Fast机制来提醒线程此ArrayList被其他线程做了修改
我们可以看个例子,下面是序列化时需要使用的 ObjectOutputStream 的 writeObject() 方法
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();
// Write out size as capacity for behavioural compatibility with clone()
s.writeInt(size);
// Write out all elements in the proper order.
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
序列化
ArrayList 基于数组实现,并且具有动态扩容特性,因此保存元素的数组不一定都会被使用,那么就没必要全部进行序列化。
保存元素的数组 elementData 使用 transient 修饰,该关键字声明数组默认不会被序列化。
transient Object[] elementData; // non-private to simplify nested class access
序列化时需要使用 ObjectOutputStream 的 writeObject() 将对象转换为字节流并输出。而 writeObject() 方法在传入的对象存在 writeObject() 的时候会去反射调用该对象的 writeObject() 来实现序列化。反序列化使用的是 ObjectInputStream 的 readObject() 方法,原理类似。
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException{
// Write out element count, and any hidden stuff
int expectedModCount = modCount;
s.defaultWriteObject();
// Write out size as capacity for behavioural compatibility with clone()
s.writeInt(size);
// Write out all elements in the proper order.
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
elementData = EMPTY_ELEMENTDATA;
// Read in size, and any hidden stuff
s.defaultReadObject();
// Read in capacity
s.readInt(); // ignored
if (size > 0) {
// be like clone(), allocate array based upon size not capacity
ensureCapacityInternal(size);
Object[] a = elementData;
// Read in all elements in the proper order.
for (int i=0; i<size; i++) {
a[i] = s.readObject();
}
}
}
ArrayList list = new ArrayList();
ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(file));
oos.writeObject(list);
如果某个类实现了Serizable,且实现了writeObject方法和ObjectInputStream方法,那么ObjectOutputStream会调用这个类的writeObject方法进行序列化,ObjectInputStream会调用相应的readObject方法进行反序列化。
ArrayList源码
https://www.cnblogs.com/xujian2014/p/4625346.html
最后在上面这篇文章中copy了一份源码,这上面还有作者的分析
public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, java.io.Serializable
{
private static final long serialVersionUID = 8683452581122892189L;
//默认的初始容量为10
private static final int DEFAULT_CAPACITY = 10;
private static final Object[] EMPTY_ELEMENTDATA = {};
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};
transient Object[] elementData;
// ArrayList中实际数据的数量
private int size;
public ArrayList(int initialCapacity) //带初始容量大小的构造函数
{
if (initialCapacity > 0) //初始容量大于0,实例化数组
{
this.elementData = new Object[initialCapacity];
}
else if (initialCapacity == 0) //初始化等于0,将空数组赋给elementData
{
this.elementData = EMPTY_ELEMENTDATA;
}
else //初始容量小于,抛异常
{
throw new IllegalArgumentException("Illegal Capacity: "+ initialCapacity);
}
}
public ArrayList() //无参构造函数,默认容量为10
{
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
}
public ArrayList(Collection<? extends E> c) //创建一个包含collection的ArrayList
{
elementData = c.toArray(); //返回包含c所有元素的数组
if ((size = elementData.length) != 0)
{
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);//复制指定数组,使elementData具有指定长度
}
else
{
//c中没有元素
this.elementData = EMPTY_ELEMENTDATA;
}
}
//将当前容量值设为当前实际元素大小
public void trimToSize()
{
modCount++;
if (size < elementData.length)
{
elementData = (size == 0)? EMPTY_ELEMENTDATA:Arrays.copyOf(elementData, size);
}
}
//将集合的capacit增加minCapacity
public void ensureCapacity(int minCapacity)
{
int minExpand = (elementData != DEFAULTCAPACITY_EMPTY_ELEMENTDATA)?0:DEFAULT_CAPACITY;
if (minCapacity > minExpand)
{
ensureExplicitCapacity(minCapacity);
}
}
private void ensureCapacityInternal(int minCapacity)
{
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)
{
minCapacity = Math.max(DEFAULT_CAPACITY, minCapacity);
}
ensureExplicitCapacity(minCapacity);
}
private void ensureExplicitCapacity(int minCapacity)
{
modCount++;
if (minCapacity - elementData.length > 0)
grow(minCapacity);
}
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
private void grow(int minCapacity)
{
int oldCapacity = elementData.length;
//注意此处扩充capacity的方式是将其向右一位再加上原来的数,实际上是扩充了1.5倍
int newCapacity = oldCapacity + (oldCapacity >> 1);
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
elementData = Arrays.copyOf(elementData, newCapacity);
}
private static int hugeCapacity(int minCapacity)
{
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
//返回ArrayList的大小
public int size()
{
return size;
}
//判断ArrayList是否为空
public boolean isEmpty() {
return size == 0;
}
//判断ArrayList中是否包含Object(o)
public boolean contains(Object o) {
return indexOf(o) >= 0;
}
//正向查找,返回ArrayList中元素Object(o)的索引位置
public int indexOf(Object o)
{
if (o == null) {
for (int i = 0; i < size; i++)
if (elementData[i]==null)
return i;
}
else
{
for (int i = 0; i < size; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
//逆向查找,返回返回ArrayList中元素Object(o)的索引位置
public int lastIndexOf(Object o) {
if (o == null) {
for (int i = size-1; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = size-1; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
//返回此 ArrayList实例的浅拷贝。
public Object clone()
{
try
{
ArrayList<?> v = (ArrayList<?>) super.clone();
v.elementData = Arrays.copyOf(elementData, size);
v.modCount = 0;
return v;
}
catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
//返回一个包含ArrayList中所有元素的数组
public Object[] toArray() {
return Arrays.copyOf(elementData, size);
}
@SuppressWarnings("unchecked")
public <T> T[] toArray(T[] a) {
if (a.length < size)
return (T[]) Arrays.copyOf(elementData, size, a.getClass());
System.arraycopy(elementData, 0, a, 0, size);
if (a.length > size)
a[size] = null;
return a;
}
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
//返回至指定索引的值
public E get(int index)
{
rangeCheck(index); //检查给定的索引值是否越界
return elementData(index);
}
//将指定索引上的值替换为新值,并返回旧值
public E set(int index, E element)
{
rangeCheck(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
//将指定的元素添加到此列表的尾部
public boolean add(E e)
{
ensureCapacityInternal(size + 1);
elementData[size++] = e;
return true;
}
// 将element添加到ArrayList的指定位置
public void add(int index, E element) {
rangeCheckForAdd(index);
ensureCapacityInternal(size + 1);
//从指定源数组中复制一个数组,复制从指定的位置开始,到目标数组的指定位置结束。
//arraycopy(被复制的数组, 从第几个元素开始复制, 要复制到的数组, 从第几个元素开始粘贴, 一共需要复制的元素个数)
//即在数组elementData从index位置开始,复制到index+1位置,共复制size-index个元素
System.arraycopy(elementData, index, elementData, index + 1,size - index);
elementData[index] = element;
size++;
}
//删除ArrayList指定位置的元素
public E remove(int index)
{
rangeCheck(index);
modCount++;
E oldValue = elementData(index);
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,numMoved);
elementData[--size] = null; //将原数组最后一个位置置为null
return oldValue;
}
//移除ArrayList中首次出现的指定元素(如果存在)。
public boolean remove(Object o) {
if (o == null)
{
for (int index = 0; index < size; index++)
if (elementData[index] == null)
{
fastRemove(index);
return true;
}
}
else
{
for (int index = 0; index < size; index++)
if (o.equals(elementData[index]))
{
fastRemove(index);
return true;
}
}
return false;
}
//快速删除指定位置的元素
private void fastRemove(int index)
{
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index, numMoved);
elementData[--size] = null;
}
//清空ArrayList,将全部的元素设为null
public void clear()
{
modCount++;
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
//按照c的迭代器所返回的元素顺序,将c中的所有元素添加到此列表的尾部
public boolean addAll(Collection<? extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
//从指定位置index开始,将指定c中的所有元素插入到此列表中
public boolean addAll(int index, Collection<? extends E> c) {
rangeCheckForAdd(index);
Object[] a = c.toArray();
int numNew = a.length;
ensureCapacityInternal(size + numNew); // Increments modCount
int numMoved = size - index;
if (numMoved > 0)
//先将ArrayList中从index开始的numMoved个元素移动到起始位置为index+numNew的后面去
System.arraycopy(elementData, index, elementData, index + numNew, numMoved);
//再将c中的numNew个元素复制到起始位置为index的存储空间中去
System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}
//删除fromIndex到toIndex之间的全部元素
protected void removeRange(int fromIndex, int toIndex)
{
modCount++;
//numMoved为删除索引后面的元素个数
int numMoved = size - toIndex;
//将删除索引后面的元素复制到以fromIndex为起始位置的存储空间中去
System.arraycopy(elementData, toIndex, elementData, fromIndex,numMoved);
int newSize = size - (toIndex-fromIndex);
//将ArrayList后面(toIndex-fromIndex)个元素置为null
for (int i = newSize; i < size; i++)
{
elementData[i] = null;
}
size = newSize;
}
//检查索引是否越界
private void rangeCheck(int index)
{
if (index >= size)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private void rangeCheckForAdd(int index)
{
if (index > size || index < 0)
throw new IndexOutOfBoundsException(outOfBoundsMsg(index));
}
private String outOfBoundsMsg(int index) {
return "Index: "+index+", Size: "+size;
}
//删除ArrayList中包含在c中的元素
public boolean removeAll(Collection<?> c)
{
Objects.requireNonNull(c);
return batchRemove(c, false);
}
//删除ArrayList中除包含在c中的元素,和removeAll相反
public boolean retainAll(Collection<?> c)
{
Objects.requireNonNull(c); //检查指定对象是否为空
return batchRemove(c, true);
}
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData;
int r = 0, w = 0;
boolean modified = false;
try
{
for (; r < size; r++)
if (c.contains(elementData[r]) == complement) //判断c中是否有elementData[r]元素
elementData[w++] = elementData[r];
}
finally
{
if (r != size)
{
System.arraycopy(elementData, r, elementData, w, size - r);
w += size - r;
}
if (w != size)
{
// clear to let GC do its work
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w;
modified = true;
}
}
return modified;
}
//将ArrayList的“容量,所有的元素值”都写入到输出流中
private void writeObject(java.io.ObjectOutputStream s) throws java.io.IOException
{
int expectedModCount = modCount;
s.defaultWriteObject();
//写入数组大小
s.writeInt(size);
//写入所有数组的元素
for (int i=0; i<size; i++) {
s.writeObject(elementData[i]);
}
if (modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
//先将ArrayList的“大小”读出,然后将“所有的元素值”读出
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
elementData = EMPTY_ELEMENTDATA;
s.defaultReadObject();
s.readInt(); // ignored
if (size > 0) {
// be like clone(), allocate array based upon size not capacity
ensureCapacityInternal(size);
Object[] a = elementData;
// Read in all elements in the proper order.
for (int i=0; i<size; i++) {
a[i] = s.readObject();
}
}
}