LinkedHashMap继承HashMap并实现了Map接口,同时具有可预测的迭代顺序(按照插入顺序排序)。它与HashMap的不同之处在于,维护了一条贯穿其全部Entry的双向链表(因为额外维护了链表的关系,性能上要略差于HashMap,不过集合视图的遍历时间与元素数量成正比,而HashMap是与buckets数组的长度成正比的),可以认为它是散列表与链表的结合。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
LinkedHashMap的Entry实现也继承自HashMap,只不过多了指向前后的两个指针。
1 2 3 4 5 6 7 8 9 |
|
你也可以通过构造函数来构造一个迭代顺序为访问顺序(accessOrder设为true)的LinkedHashMap,这个访问顺序指的是按照最近被访问的Entry的顺序进行排序(从最近最少访问到最近最多访问)。基于这点可以简单实现一个采用LRU(Least Recently Used)策略的缓存。
1 2 3 4 5 6 |
|
LinkedHashMap复用了HashMap的大部分代码,所以它的查找实现是非常简单的,唯一稍微复杂点的操作是保证访问顺序。
1 2 3 4 5 6 7 8 |
|
还记得这些afterNodeXXXX命名格式的函数吗?我们之前已经在HashMap中见识过了,这些函数在HashMap中只是一个空实现,是专门用来让LinkedHashMap重写实现的hook函数。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
注意removeEldestEntry()
默认永远返回false,这时它的行为与普通的Map无异。如果你把removeEldestEntry()
重写为永远返回true,那么就有可能使LinkedHashMap处于一个永远为空的状态(每次put()
或者putAll()
都会删除头节点)。
一个比较合理的实现示例:
1 2 3 |
|
LinkedHashMap重写了newNode()
等函数,以初始化或连接节点到它内部的双向链表:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
|
遍历LinkedHashMap所需要的时间与Entry数量成正比,这是因为迭代器直接对双向链表进行迭代,而链表中只会含有Entry节点。迭代的顺序是从头节点开始一直到尾节点,插入操作会将新节点链接到尾部,所以保证了插入顺序,而访问顺序会通过afterNodeAccess()
来保证,访问次数越多的节点越接近尾部。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
|