1.需求一
用红色Mask出一个图片中RGB三个通道像素值都符合在某一个范围内图像区域,用蓝色mask出既符合三通道,像素值在一个范围内也符合亮度在一个区间内的局部区域,并输出符合区域所占整个区域的比例
Mat QuickDemo::mask_localImage(Mat& image)
{
// 输入图像image是单通道的灰度图
float h = image.rows;
float w = image.cols;
int dims = image.channels();
// 将单通道灰度图转换成为伪灰度图的三通道图像
Mat image_bgr1;
cvtColor(image, image_bgr1, COLOR_GRAY2BGR);
int r_count = 0;
for (int row = 0; row < h; row++)
{
for (int col = 0; col < w; col++)
{
if (image_bgr1.at<Vec3b>(row, col)[0] > 10 &&
image_bgr1.at<Vec3b>(row, col)[1] > 100 &&
image_bgr1.at<Vec3b>(row, col)[2]>150)
{
image_bgr1.at<Vec3b>(row, col)[0] = 0;
image_bgr1.at<Vec3b>(row, col)[1] = 0;
image_bgr1.at<Vec3b>(row, col)[2] = 255;
r_count++;
}
else if (image.at<uchar>(row,col)>50 &&
image.at<uchar>(row, col)<100)
{
image_bgr1.at<Vec3b>(row, col)[0] = 0;
image_bgr1.at<Vec3b>(row, col)[1] = 255;
image_bgr1.at<Vec3b>(row, col)[2] = 0;
}
else if (image_bgr1.at<Vec3b>(row, col)[0] > 10 &&
image_bgr1.at<Vec3b>(row, col)[1] > 100 &&
image_bgr1.at<Vec3b>(row, col)[2] > 150
&& image.at<uchar>(row, col) > 50 ||
image.at<uchar>(row, col) < 100)
{
image_bgr1.at<Vec3b>(row, col)[0] = 255;
image_bgr1.at<Vec3b>(row, col)[1] = 0;
image_bgr1.at<Vec3b>(row, col)[2] = 0;
}
}
}
cout << "红色区域的像素个数" << r_count << endl;
cout << "红色区域的像素所占的比率是:" << r_count / (h * w) << endl;
return image_bgr1;
}
测试代码:
#include<opencv2/opencv.hpp>
#include<iostream>
#include<quickopencv.h>
using namespace cv;
using namespace std;
int main(int argc, char** argv) {
Mat src = imread("D:\\testImage\\4.BMP");
Mat pt = src;
if (src.empty()) {
printf("could not load image...");
return -1;
}
namedWindow("原图", WINDOW_FREERATIO);
imshow("原图", src);
Mat image_gray;
cvtColor(src, image_gray, COLOR_BGR2GRAY);
Mat image_bgr;
cvtColor(image_gray, image_bgr, COLOR_GRAY2BGR);
namedWindow("输入窗口", WINDOW_FREERATIO);
imshow("输入窗口", image_bgr);
int gray_dims = image_gray.channels();
int bgr_dims = image_bgr.channels();
cout << "image_gray的通道数:" << gray_dims << endl;
cout << "image_bgr的通道数:" << bgr_dims << endl;
QuickDemo qd;
Mat new_image = qd.mask_localImage(image_gray);
namedWindow("new_image", WINDOW_FREERATIO);
imshow("new_image", new_image);
waitKey(0);
return 0;
}
原图和灰度图
标记图
其他颜色区域所占的比率大家有兴趣可以自己输出
需求二
我们需要对ROI(感兴趣的区域)框起来。
void QuickDemo::draw_interest_pluse(Mat& image, int re_h, int re_w) {
// 首先打上掩膜
Mat image_add = mask_localImage(image);
int h = image_add.rows; // 原图高
int w = image_add.cols; // 原图宽
int r_h = h / re_h; // 分割高度以后的区域
int r_w = w / re_w; // 分割宽度以后的区域
// vector<Point> points; // 设置容器,用来存储坐标
for (int i = 0; i < re_h; i++) {
for (int j = 0; j < re_w; j++) {
vector<Point> points; // 设置容器,用来存储坐标
for (int row = i * r_h; row < r_h * (i + 1); row++) {
for (int col = j * r_w; col < (j + 1) * r_w; col++) {
if (image_add.at<Vec3b>(row, col)[0] == 0 &&
image_add.at<Vec3b>(row, col)[1] == 0 &&
image_add.at<Vec3b>(row, col)[2] == 255) {
// 查找符合要求的像素点
Point midPoint;
midPoint.x = col;
midPoint.y = row;
points.push_back(midPoint);
}
}
}
Rect rect = boundingRect(points);
rectangle(image_add, rect, Scalar(0, 0, 0), 1, 8);
}
}
namedWindow("add_mask", WINDOW_FREERATIO);
imshow("add_mask", image_add);
}
测试函数如下:
#include<opencv2/opencv.hpp>
#include<iostream>
#include<quickopencv.h>
using namespace cv;
using namespace std;
int main(int argc, char** argv) {
Mat src = imread("D:\\testImage\\123.BMP");
if (src.empty()) {
printf("could not load image...");
return -1;
}
Mat src_gray;
cvtColor(src, src_gray, COLOR_BGR2GRAY);
QuickDemo qd;
Mat after_image = qd.mask_localImage(src_gray);
namedWindow("new_image", WINDOW_FREERATIO);
imshow("new_image", after_image);
qd.draw_interest_pluse(src_gray, 2, 4);
waitKey(0);
return 0;
}
结果如下:
上图是根据需求一实现的对ROI区域进行掩模的图,我们需要对他进行框起来
结果如下: