关于java线程(4)----JUC之 AQS 状态依赖的抽象

JUC AQS 状态依赖的抽象

AQS全称为:AbstractQueuedSynchronizer,它是jucsynchronizer的基础

 

状态依赖的管理

JUC中,不管是FutureTaskCountDownLatchLock、还是信号量,CyclicBarrier,从某种角度来说,他们都是依赖某种状态,或者说条件,虽然这些条件的值不同:

  • 1.FutureTask等待任务结束
  • 2.CountDownLatch等待计数器到0
  • 3.Lock在等待其他线程释放锁
  • 4.信号量在等待获得允许
  • 5.CyclicBarrier在等待计数器到0

从某个角度来说,都是在做下面的事情(另一个线程会发送notify消息唤醒等待的线程)

 

while (!state){
       wait();    
}
change state();

 

在单线程的程序中,进入等待状态,那么永远也不能被唤醒了,在并发程序中,基于状态的条件是会在其他线程中改变的,因此就是其他线程就需要被阻塞,直到可以继续.

 

依赖状态在等待的时候可以理解为进入了一个FIFO队列,前面提到的一些类,就是在状态未满足的情况下阻塞,并且加入队列,在合适的时机,唤醒。Java提供了这样的内部队列,但是它是和锁相关的,每个对象都有一把锁,每把锁都有对应的队列,Object中的waitnotifynotifyAll就是操作这个队列的API(参考系列2,话说,话说java这也太不直观了)。从这个角度来看,要操作锁的队列,需要先有锁,因此wait/notify需要在锁中调用,另外,这也确保了,在观察/操作状态的时候,不会有其他线程修改状态!类似这样:

Syn{
       while (!state){
              wait();    
       }
       change state();
}

AQS 状态

前面提到了状态以后,以及wait/notify的队列支持,但是内部锁很不灵活,wait/notify用起来也有很多麻烦的地方,特别是多个线程等待因为不同的原因等待同一个对象上的消息的时候,非常不直观,因此FutureTask/CountDownLatch等是用另一种方式实现的,看ReentrantLock的源码,会发现locktryLock等方法都是调用内部类Sync实现,Sync又是继承自AQS,其他类也是这样的,AQS是这些synchronizer类的基础。

 

状态依赖的抽象

 

AQS将上面的状态依赖合理抽象,设计理念主要有两部分:

  • 1.状态,决定了什么时候需要阻塞,每种synchronizer可能不同,拿每个人自己的业务应用来说,可能是判断XX集合是否为空等等,这些都可以通过实现抽象方法tryAcquire实现,只要返回boolean类型表明状态是否ok就好了,不管你是什么状态
  • 2.等待队列,阻塞的线程去的地方,都是一个队列里的统一操作

 

状态主要由字段stategetSatesetStatecompareAndSetState来表达、操作,状态的原子操作非常重要,可以保证实现synchronizer的语义,否则就会有并发问题;队列中保存的不仅仅是线程信息,它保存的是AQS的一个内部类,Node,它的结构后面介绍

 

在进行一个因为某些原因可能阻塞的操作时,大致流程是下面这样的:




 

235的操作,是需要不同的synchronizer自己实现的:

 

ReentrantLock判断state是否为0这时将当前线程设置为拥有者并且修改状态改为1否则挂起当前线程,加入等待队列

 

final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
			// 独占锁,判断状态是否为0 
            if (c == 0) {
				//通过原子操作设置状态
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

 

 

CountDownLatch则是判断状态是否减为0不是的话则挂起线程,放入阻塞队列

 

//如果失败,表示状态没有ok,需要放入等待队列,并且通过LockSupport挂起线程
		public int tryAcquireShared(int acquires) {
            return getState() == 0? 1 : -1;
        }

 

 

 

Semaphore则是判断是否还有可用的许可,也就是判断(available-acquires)是否大于0,如果许可是1的话,其实也就是个独占锁,否则则挂起线程,放入阻塞队列;

 

final int nonfairTryAcquireShared(int acquires) {
            for (;;) {
                int available = getState();
                int remaining = available - acquires;
                if (remaining < 0 ||
                    compareAndSetState(available, remaining))
                    return remaining;
            }
        }
 

 

 

FutureTask的条件是判断任务是否结束

 

protected int tryAcquireShared(int ignore) {
	//判断状态是被已经ok还是cancel了
            return innerIsDone()? 1 : -1;
        }

 

 在调用Get方法的时候,如果状态没有ok,会被放入队列,阻塞

  V innerGet() throws InterruptedException, ExecutionException {

              //here
           acquireSharedInterruptibly(0);
            if (getState() == CANCELLED)
                throw new CancellationException();
            if (exception != null)
                throw new ExecutionException(exception);
            return result;
        }

 

 

对应步骤5ReentrantLock调用unLock会修改state0,并且设置锁拥有者为null如果有等待中的线程,唤醒一个:

 

protected final boolean tryRelease(int releases) {
            int c = getState() - releases;
            if (Thread.currentThread() != getExclusiveOwnerThread())
                throw new IllegalMonitorStateException();
            boolean free = false;
            if (c == 0) {
                free = true;
                setExclusiveOwnerThread(null);
            }
            setState(c);
            return free;
        }

 

CountDownLatch会调用countDown方法,每次state1,直到state0,表示状态ok唤醒所有其他线程

 

public boolean tryReleaseShared(int releases) {
                      for (;;) {
                int c = getState();
                if (c == 0)
                    return false;
                int nextc = c-1;
				  // 注意状态的修改都是原子操作,并且都是for循环里的
                if (compareAndSetState(c, nextc))
                    return nextc == 0;
            }
        } 
Semaphore会调用release方法,每次将许可加1,这样其他线程可以重新获得许可:如果队列里有阻塞的线程的话,唤醒 

 

protected final boolean tryReleaseShared(int releases) {
            for (;;) {
                int p = getState();
                if (compareAndSetState(p, p + releases))
                    return true;
            }
        }

 

FutureTask则是在设置状态为RUN并且唤醒阻塞的线程

 

void innerSet(V v) {
	    for (;;) {
		int s = getState();
		if (s == RAN)
		    return;
                if (s == CANCELLED) {
		    		
                    releaseShared(0);
                    return;
                }
				if (compareAndSetState(s, RAN)) {
                    result = v;
                    releaseShared(0);
                    done();
		 		   return;
                }
            }
        }

 

看了这么多典型的synchronizer可以发现,这种颜色标记出来的,是每种synchronizer可能不同的地方,需要子类自己实现而这种颜色的,不管是什么synchronizer都是一样的,一个队列,就那么几个操作,比如入对挂起,单个唤醒出对列、全部唤醒出对列,所以它的代码在AQS里面,主要是一些队列和锁的操作,后面再抓个例子看看;需要自定义的主要有以下几个操作:

 

tryAcquire  返回独占模式下状态的判断, Reentrant根据返回决定是否阻塞线程,加入等待队列

tryRelease,返回独占模式下的状态判断,Reentrant判断是否成功释放锁,并且是否唤醒后面的等待线程

isHeldExclusively返回独占模式下,当前线程是否占用了锁

 

tryAcquireShared,非独占模式下的状态判断,Latch判断state是否为0,根据返回决定是否阻塞当前线程,加入等待

tryReleaseShared,非独占模式下的状态判断,Latchstate1状态,并且父类根据返回决定是否需要唤醒所有等待线程

 

tryAcquire,tryReleaseisHeldExclusively三个方法为需要独占形式获取的synchronizer实现的,而tryAcquireSharedtryReleasedShared为需要共享形式获取的synchronizer实现。(从我的角度来看,有tryAcquiretryRelease就够了,可能是为了语义上更加明显吧)

 

Node的结构

队列中保存的Node元素结构是这样的:


 

节点的状态

 

状态的判定非常简单,不用判断特定的数值,非负数表示当前节点不必去发出通知;

 

SIGNAL状态表示该节点的后继节点需要被唤醒。这个状态的作用主要是告诉前置节点:“你结束以后,你后面还有兄弟需要被唤醒”,如果没有这个状态,那么unlock以后,仅仅是修改锁的状态,不会有什么操作!

如果因为中断/超时,该请求已经取消,会修改状态未Cancled,遇到取消的任务,那么需要踢出这些节点,并把后面的节点接上,Pre这个引用在一般的CLH锁中是没有的,这里主要是为了在取消的时候,保证取消节点的next可以指向取消节点的pre

 

另外,

注意:依赖Node状态去判断是否有后继结点需要唤醒,又会牵涉到变量的竞争,为了避免竞争,必须1.原子操作先设置Node状态,2.再次尝试获取锁,3.失败以后再阻塞线程!看下面shouldParkAfterFailedAcquire的例子

 

双向链表 

 

它是是一个双向链表:

 

           +----------+  prev  +--------+              +------+

            | head   | <------- |           | <-------- | tail    | 

            |            | ------->|            | --------à|          |

           +---------+  next   +---------+             +------+

 

Head节点就是代表正在占用锁的节点,但是该链表是延迟初始化的,也就是说,并不会在第一次有代码获取锁的时候就初始化这个队列,只会在第一次真正有线程阻塞,需要加入阻塞队列的时候初始化!因此:

 

 写道
1.在只有一个线程占用锁的时候,队列为空

2.在有一个阻塞线程的时候是这样:
Dummy head----àwait thread1(tail)

2.两个阻塞线程的时候是这样:
Dummy head----àwait thread1----àwait thread 2(tail)

4.当前面一个线程结束的时候,会唤醒head后的第一个节点:
wait thread1(head)----àwait thread 2(tail)
 

LockSupport

 

另外,还必须了解下一个工具类,LockSupport

为阻塞线程提供基础的功能,它由一对parkunpark组成,park会阻塞当前线程,unpark“唤醒”等待线程;内部使用了类似信号量的“许可”机制,该许可为0park会在许可等于0的时候下阻塞,等于1的时候立即返回,并且将许可减为0umpark会尝试唤醒线程,并且将许可+1(最大值就是1)。因此,如果先调用unpark方法,再调用park是无效的,因为这时候许可为1park会立即返回,搞段简单的代码测试下:

 

public static void main(String args[]) throws Exception {
        //先调用下unpark
		LockSupport.unpark(Thread.currentThread());
        
		LockSupport.park();

		//打出了not work,说明没起作用
        System.out.println("not work");

        LockSupport.park();
         System.out.println(" wok");

}
 因此,从原则上来说,最好park/unpark按顺序,依次出现。

 

另外也并不是只有调用unpark方法才会返回,在下面3中情况下,park都会返回:

1.其他线程对当前线程调用了unpark方法,

2.其他线程中断了当前阻塞的线程

3.“不靠谱的”,毫无理由的返回,这类似一种“忙等待”的机制,不断地返回,不断地检查条件,不过这种方式自旋的时间更短一些,因为这个原因,需要向下面这样调用park方法:

 

while (!canProceed()) { ... LockSupport.park(this); }
 wait/notify是和对象、锁、等待队列、线程强关联的,在调用wait的时候,必须有锁,这时候释放对象上的锁,将当前线程加入该对象锁的等待队列;

 

park/unpark和当前对象、锁、等待队列无关,park方法只是会挂起当前线程;unpark(thread)方法唤醒对应的线程,至于是否有锁、是否放入对待队列,我们并不关心!下面的例子证明了park/wait他们之间是没什么关联的:

 

public class LockSupportAndWait {
    
    
    public static void main(String[] args) throws InterruptedException{
        Thread t=new Thread(){
            public  void run(){
                try {
                    System.out.println("wait");
                    synchronized(this){
                     this.wait();
                    }
                    System.out.println("notify work");
                    
                    System.out.println("=============================");
                     System.out.println("park");
                     //因为上面提到的原因,这里调用两次park
                    LockSupport.park();
                    LockSupport.park();
                    System.out.println("unpark work");
                } catch (InterruptedException ex) {
                }
                        
            }
        };
        t.start();
        
        TimeUnit.MILLISECONDS.sleep(100);
        System.out.println("go to unpark");
         LockSupport.unpark(t);
         
        System.out.println("go to notify");
        goNotify(t);
        
        TimeUnit.MILLISECONDS.sleep(1000);
        
         System.out.println("go to notify");
        goNotify(t);
         System.out.println("go to unpark");
        LockSupport.unpark(t);
        
        
    }
    
    public static  void goNotify(Thread t){
       
        synchronized(t){
         t.notify();
        }
    }
    
}
 结果(可以看到他们之间没有影响):

wait

go to unpark

go to notify

notify work

=============================

park

go to notify

go to unpark

unpark work

 

 

ps:下一篇再找个源码分析下吧,这篇长了点

【基于QT的调色板】是一个使用Qt框架开发的色彩选择工具,类似于Windows操作系统中常见的颜色选取器。Qt是一个跨平台的应用程序开发框架,广泛应用于桌面、移动和嵌入式设备,支持C++和QML语言。这个调色板功能提供了横竖两种渐变模式,用户可以方便地选取所需的颜色值。 在Qt中,调色板(QPalette)是一个关键的类,用于管理应用程序的视觉样式。QPalette包含了一系列的颜色角色,如背景色、前景色、文本色、高亮色等,这些颜色可以根据用户的系统设置或应用程序的需求进行定制。通过自定义QPalette,开发者可以创建具有独特视觉风格的应用程序。 该调色板功能可能使用了QColorDialog,这是一个标准的Qt对话框,允许用户选择颜色。QColorDialog提供了一种简单的方式来获取用户的颜色选择,通常包括一个调色板界面,用户可以通过滑动或点击来选择RGB、HSV或其他色彩模型中的颜色。 横渐变取色可能通过QGradient实现,QGradient允许开发者创建线性或径向的色彩渐变。线性渐变(QLinearGradient)沿直线从一个点到另一个点过渡颜色,而径向渐变(QRadialGradient)则以圆心为中心向外扩散颜色。在调色板中,用户可能可以通过滑动条或鼠标拖动来改变渐变的位置,从而选取不同位置的颜色。 竖渐变取色则可能是通过调整QGradient的方向来实现的,将原本水平的渐变方向改为垂直。这种设计可以提供另一种方式来探索颜色空间,使得选取颜色更为直观和便捷。 在【colorpanelhsb】这个文件名中,我们可以推测这是与HSB(色相、饱和度、亮度)色彩模型相关的代码或资源。HSB模型是另一种常见且直观的颜色表示方式,与RGB或CMYK模型不同,它以人的感知为基础,更容易理解。在这个调色板中,用户可能可以通过调整H、S、B三个参数来选取所需的颜色。 基于QT的调色板是一个利用Qt框架和其提供的色彩管理工具,如QPalette、QColorDialog、QGradient等,构建的交互式颜色选择组件。它不仅提供了横竖渐变的色彩选取方式,还可能支持HSB色彩模型,使得用户在开发图形用户界面时能更加灵活和精准地控制色彩。
标题基于Spring Boot的二手物品交易网站系统研究AI更换标题第1章引言阐述基于Spring Boot开发二手物品交易网站的研究背景、意义、现状及本文方法与创新点。1.1研究背景与意义介绍二手物品交易的市场需求和Spring Boot技术的适用性。1.2国内外研究现状概述当前二手物品交易网站的发展现状和趋势。1.3论文方法与创新点说明本文采用的研究方法和在系统设计中的创新之处。第2章相关理论与技术介绍开发二手物品交易网站所涉及的相关理论和关键技术。2.1Spring Boot框架解释Spring Boot的核心概念和主要特性。2.2数据库技术讨论适用的数据库技术及其在系统中的角色。2.3前端技术阐述与后端配合的前端技术及其在系统中的应用。第3章系统需求分析详细分析二手物品交易网站系统的功能需求和性能需求。3.1功能需求列举系统应实现的主要功能模块。3.2性能需求明确系统应满足的性能指标和安全性要求。第4章系统设计与实现具体描述基于Spring Boot的二手物品交易网站系统的设计和实现过程。4.1系统架构设计给出系统的整体架构设计和各模块间的交互方式。4.2数据库设计详细阐述数据库的结构设计和数据操作流程。4.3界面设计与实现介绍系统的界面设计和用户交互的实现细节。第5章系统测试与优化说明对系统进行测试的方法和性能优化的措施。5.1测试方法与步骤测试环境的搭建、测试数据的准备及测试流程。5.2测试结果分析对测试结果进行详细分析,验证系统是否满足需求。5.3性能优化措施提出针对系统性能瓶颈的优化建议和实施方案。第6章结论与展望总结研究成果,并展望未来可能的研究方向和改进空间。6.1研究结论概括本文基于Spring Boot开发二手物品交易网站的主要发现和成果。6.2展望与改进讨论未来可能的系统改进方向和新的功能拓展。
1. 用户与权限管理模块 角色管理: 学生:查看个人住宿信息、提交报修申请、查看卫生检查结果、请假外出登记 宿管人员:分配宿舍床位、处理报修申请、记录卫生检查结果、登记晚归情况 管理员:维护楼栋与房间信息、管理用户账号、统计住宿数据、发布宿舍通知 用户操作: 登录认证:对接学校统一身份认证(模拟实现,用学号 / 工号作为账号),支持密码重置 信息管理:学生完善个人信息(院系、专业、联系电话),管理员维护所有用户信息 权限控制:不同角色仅可见对应功能(如学生无法修改床位分配信息) 2. 宿舍信息管理模块 楼栋与房间管理: 楼栋信息:名称(如 "1 号宿舍楼")、层数、性别限制(男 / 女 / 混合)、管理员(宿管) 房间信息:房间号(如 "101")、户型(4 人间 / 6 人间)、床位数量、已住人数、可用状态 设施信息:记录房间内设施(如空调、热水器、桌椅)的配置与完好状态 床位管理: 床位编号:为每个床位设置唯一编号(如 "101-1" 表示 101 房间 1 号床) 状态标记:标记床位为 "空闲 / 已分配 / 维修中",支持批量查询空闲床位 历史记录:保存床位的分配变更记录(如从学生 A 调换到学生 B 的时间与原因) 3. 住宿分配与调整模块 住宿分配: 新生分配:管理员导入新生名单后,宿管可按专业集中、性别匹配等规则批量分配床位 手动分配:针对转专业、复学学生,宿管手动指定空闲床位并记录分配时间 分配结果公示:学生登录后可查看自己的宿舍信息(楼栋、房间号、床位号、室友列表) 调整管理: 调宿申请:学生提交调宿原因(如室友矛盾、身体原因),选择意向宿舍(需有空位) 审批流程:宿管审核申请,通过后执行床位调换,更新双方住宿信息 换宿记录:保存调宿历史(申请人、原床位、新床位、审批人、时间) 4. 报修与安全管理模块 报修管理: 报修提交:学生选择宿舍、设施类型(如 "
### Java JUC AQS 并发编程 抽象队列同步器 使用教程 源码解析 #### 什么是AQS? `AbstractQueuedSynchronizer`(简称AQS),作为Java并发包中的核心组件之一,提供了用于实现锁和其他同步器的基础框架。它不仅简化了锁和同步工具的创建过程,还提高了这些工具的工作效率[^2]。 #### 类图结构与工作原理 AQS的设计围绕着一个FIFO(先进先出)等待队列展开,该队列由多个节点组成,每个节点代表了一个正在等待获取资源的线程。每当有新的竞争者未能立即获得所需资源时,就会被构造成一个新的节点并加入到这个队列之中;而当现有持有者释放其持有的资源之后,则会从队头开始依次唤醒后续等待者去尝试占有资源[^5]。 #### 同步模式分类 为了适应不同场景下的需求,AQS支持两种主要类型的同步方式——独占式以及共享式: - **独占式**:一次只允许单个线程访问临界区,在这种情况下其他任何试图进入同一区域内的请求都将被迫挂起直到前序操作完成为止; - **共享式**:允许多个读取者同时存在而不互相干扰,只要不存在写入动作发生即可保持一致性和安全性[^3]。 #### 自定义同步器的关键接口 对于想要利用AQS来构建特定行为逻辑的新类型而言,开发者通常需要重载以下几个抽象方法以适配具体的应用环境: - `tryAcquire(int arg)` 和 `tryRelease(int arg)` - `tryAcquireShared(int arg)` 及 `tryReleaseShared(int arg)` - `isHeldExclusively()` 上述函数分别对应于独占/共享模式下对资源的操作控制流程,通过合理地覆盖它们可以轻松打造出满足业务特性要求的各种高级别同步原语[^1]。 ```java public class CustomSync extends AbstractQueuedSynchronizer { protected boolean tryAcquire(int acquires) { // 实现具体的独占式获取逻辑 return super.tryAcquire(acquires); } protected boolean tryRelease(int releases) { // 实现具体的独占式释放逻辑 return super.tryRelease(releases); } } ``` #### 队列管理机制详解 在实际运行过程中,AQS内部维护了一条双向链表形式的数据结构用来存储各个待处理的任务单元。每当新成员到来之时便会调用`enqueue()`方法将其追加至末端位置上形成完整的链条关系网状链接,并且借助CAS指令保证整个插入过程的安全可靠性质不受外界因素影响破坏[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值