题目
有两个序列a,b,大小都为n,序列元素的值任意整数,无序;
要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
实现
思路:
当前数组a和数组b的和之差为
A = sum(a) - sum(b)
a的第i个元素和b的第j个元素交换后,a和b的和之差为
A’ = sum(a) - a[i] + b[j] - (sum(b) - b[j] + a[i])
= sum(a) - sum(b) - 2 (a[i] - b[j])
= A - 2 (a[i] - b[j])
设x = a[i] - b[j]
|A| - |A’| = |A| - |A-2x|
|A’|= |A-2x|
假设A > 0,
当x 在 (0,A)之间时,做这样的交换才能使得交换后的a和b的和之差变小,x越接近A/2效果越好,
如果找不到在(0,A)之间的x,则当前的a和b就是答案。
所以算法大概如下:
在a和b中寻找使得x在(0,A)之间并且最接近A/2的i和j,交换相应的i和j元素,重新计算A后,重复前面的步骤直至找不到(0,A)之间的x为止。
代码实现:
public static void BalanceArray(