摄像机模型——针孔成像

针孔成像模型是摄像机成像模型中最简单的模型。在此模型中,光线从场景发射过来,通过针孔摄像机,该点被“投影”到成像平面(image plane),在这种情况下,远处物体的成像大小仅用一个摄像机参数描述:焦距(focal length)。如下图,f是摄像机焦距,Z是摄像机到物体的距离,X是物体的长度,x是图像平面上物体图像。通过相似三角形可以得到这里写图片描述

这里写图片描述

我们把投影平面放在针孔的前方,可以得到数学上等价,但形式更简单的情况,如下图所示,点Q = (X, Y, Z)由通过投影中心O的光线投影到图像平面上的q = (x , y, f)。
此时,这里写图片描述

### 针孔相机模型用于计算机视觉中的三维重建 针孔相机模型是一种理想化的摄像机成像方式,在该模型下,光线穿过一个小孔并投射到图像平面上形成倒立的影像。这种简单而有效的建模方法广泛应用于计算机视觉领域。 #### 数学描述 对于针孔相机而言,其内部参数矩阵 \( K \) 描述了从世界坐标系到像素坐标的转换关系[^3]: \[ s\begin{bmatrix} u \\ v \\ 1 \end{bmatrix}=K\left[\begin{array}{c} X \\ Y \\ Z \end{array}\right]=\left[f_x f_y c_x c_y\right]\cdot\left[\begin{array}{l} X / Z \\ Y / Z \\ 1 \end{array}\right] \] 其中, - \( (u, v) \) 表示图像上的二维投影位置; - \( X,Y,Z \) 是空间点的世界坐标; - \( f_x,f_y \) 分别代表沿 x 和 y 方向的焦距; - \( c_x,c_y \) 则是主点的位置; 当已知多个视角下的对应点集时,可以通过求解这些方程组来恢复物体的空间结构以及各个摄像头之间的相对姿态变换矩阵[^2]。 #### 多视图几何基础 为了实现精确可靠的三维重建效果,通常会采用多张不同角度拍摄的照片作为输入数据源。基于此,可以运用诸如SIFT/SURF等局部不变特征检测器提取稳定的关键点,并借助FLANN或其他快速近似最近邻搜索库完成高效配对操作。随后应用随机抽样一致性(RANSAC)算法剔除误匹配项,从而获得鲁棒的姿态估计结果。 一旦得到了足够的可靠同名点对之后,则可进一步利用束调整(Bundle Adjustment)优化整个系统的精度水平——即最小化重投影误差的同时更新所有涉及变量的最佳估值。 ```python import numpy as np from scipy.optimize import least_squares def reprojection_error(params, points_3d, points_2d, camera_matrix): """计算重投影误差""" R_vec = params[:3] t = params[3:] # 将旋转向量转化为旋转矩阵 R, _ = cv2.Rodrigues(R_vec) errors = [] for P_w, p in zip(points_3d, points_2d): P_c = R @ P_w + t # 归一化齐次坐标 uv_homogeneous = camera_matrix @ P_c uv_normalized = uv_homogeneous[:-1]/uv_homogeneous[-1] error = np.linalg.norm(uv_normalized - p) errors.append(error**2) return sum(errors) # 假设我们已经获得了初始猜测值... initial_guess = ... points_3d = ... points_2d = ... camera_matrix = [[fx,0,cx], [0,fy,cy], [0 ,0, 1]] result = least_squares(reprojection_error, initial_guess, args=(points_3d, points_2d, camera_matrix)) optimized_params = result.x ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值