【Light OJ 1414】February 29(容斥原理)

本文介绍了一个计算两个指定日期之间闰日数量的程序。通过容斥原理确定给定年份是否为闰年,并据此计算闰日总数。文章提供了一段C++代码实现,包括日期输入解析及闰年判断。

Time Limit: 1000MSMemory Limit: 32768KB64bit IO Format: %lld & %llu

Submit Status

Description

It is 2012, and it's a leap year. So there is a "February 29" in this year, which is called leap day. Interesting thing is the infant who will born in this February 29, will get his/her birthday again in 2016, which is another leap year. So February 29 only exists in leap years. Does leap year comes in every 4 years? Years that are divisible by 4 are leap years, but years that are divisible by 100 are not leap years, unless they are divisible by 400 in which case they are leap years.

In this problem, you will be given two different date. You have to find the number of leap days in between them.

Input

Input starts with an integer T (≤ 550), denoting the number of test cases.

Each of the test cases will have two lines. First line represents the first date and second line represents the second date. Note that, the second date will not represent a date which arrives earlier than the first date. The dates will be in this format - "month day, year", See sample input for exact format. You are guaranteed that dates will be valid and the year will be in between 2 * 103 to 2 * 109. For your convenience, the month list and the number of days per months are given below. You can assume that all the given dates will be a valid date.

Output


For each case, print the case number and the number of leap days in between two given dates (inclusive).

Sample Input

4

January 12, 2012

March 19, 2012

August 12, 2899

August 12, 2901

August 12, 2000

August 12, 2005

February 29, 2004

February 29, 2012

Sample Output

Case 1: 1

Case 2: 0

Case 3: 1

Case 4: 3

容斥原理求该年之前闰年的个数

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<map>
#include<algorithm>
using namespace std;
map<string,int>mp;
void init() {
	int flag=1;
	mp["January"]=flag++;
	mp["February"]=flag++;
	mp["March"]=flag++;
	mp["April"]=flag++;
	mp["May"]=flag++;
	mp["June"]=flag++;
	mp["July"]=flag++;
	mp["August"]=flag++;
	mp["September"]=flag++;
	mp["Ocober"]=flag++;
	mp["November"]=flag++;
	mp["December"]=flag++;
}
bool judge(int n) {
	if(n%400==0||n%4==0&&n%100!=0)
		return true;
	return false;
}
int main() {
	int T,casen=0,ans;
	char c1[20],c2[20];
	int year1,year2,day1,day2;
	scanf("%d",&T);
	init();
	while(T--) {
		int ans=0;
		scanf("%s%d,%d",c1,&day1,&year1);
		scanf("%s%d,%d",c2,&day2,&year2);
		int cnt1,cnt2;
		cnt1=year1/4-year1/100+year1/400;                //容斥原理
		cnt2=year2/4-year2/100+year2/400;
		if(judge(year1)){
			if(mp[c1]==1||mp[c1]==2){		//只有月份大于2时year1年之前的2.29个数才不减 
				cnt1--;
			}
		}
		if(judge(year2)){
			if(mp[c2]==1||mp[c2]==2&&day2<=28){
				cnt2--;
			}
		}
		ans=cnt2-cnt1;
		printf("Case %d: %d\n",++casen,ans);
	}
	return 0;
}





考虑柔性负荷的综合能源系统低碳经济优化调度【考虑碳交易机制】(Matlab代码实现)内容概要:本文围绕“考虑柔性负荷的综合能源系统低碳经济优化调度”展开,重点研究在碳交易机制下如何实现综合能源系统的低碳化与经济性协同优化。通过构建包含风电、光伏、储能、柔性负荷等多种能源形式的系统模型,结合碳交易成本与能源调度成本,提出优化调度策略,以降低碳排放并提升系统运行经济性。文中采用Matlab进行仿真代码实现,验证了所提模型在平衡能源供需、平抑可再生能源波动、引导柔性负荷参与调度等方面的有效性,为低碳能源系统的设计与运行提供了技术支撑。; 适合人群:具备一定电力系统、能源系统背景,熟悉Matlab编程,从事能源优化、低碳调度、综合能源系统等相关领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究碳交易机制对综合能源系统调度决策的影响;②实现柔性负荷在削峰填谷、促进可再生能源消纳中的作用;③掌握基于Matlab的能源系统建模与优化求解方法;④为实际综合能源项目提供低碳经济调度方案参考。; 阅读建议:建议读者结合Matlab代码深入理解模型构建与求解过程,重点关注目标函数设计、约束条件设置及碳交易成本的量化方式,可进一步扩展至多能互补、需求响应等场景进行二次开发与仿真验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值