- Leader in Tree Land
可以用求概率的思想来解决这个问题。令以i号节点为根的子树为第i棵子树,设这颗子树恰好有sz[i]个点。那么第i个点是第i棵子树最大值的概率为1/sz[i],不是最大值的概率为(sz[i]-1)/sz[i]。现在可以求解恰好有k个最大值的概率。
令dp[i][j]表示考虑编号从1到i的点,其中恰好有j个点是其子树最大值的概率。 很容易得到如下转移方程:dp[i][j]=dp[i-1][j]*(sz[i]-1)/sz[i]+dp[i-1][j-1]/sz[i]。这样dp[n][k]就是所有点中恰好有k个最大值的概率。
题目要求的是方案数,用总数n!乘上概率就是答案。计算的时候用逆元代替上面的分数即可。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <vector>
#include <set>
#include <algorithm>
using namespace std;
#define mem(x,i) memset(x,i,sizeof(x))
#define sfi(a) scanf("%d", &a)
#define sfii(a,b) scanf("%d %d", &a, &b)
#define sfiii(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define sf scanf
#define pf printf
const double EPS = 1e-10;
const double pai = acos(-1.0);
const int INF = 0xfffffff;
const int MOD = 1000000007;
typedef long long LL;
const int maxn = 1005;
int N, K;
vector<int> g[maxn];
int sz[maxn];
LL dp[maxn][maxn], F[maxn], inv[maxn];
void init(){
for (int i = 1; i <= N; i++){
g[i].clear();
sz[i] = 0;
}
}
LL pow_mod(LL a, LL p, LL n){
if (p == 0) return 1;
LL ans = pow_mod(a, p / 2, n);
ans = ans*ans%n;
if (p % 2 == 1) ans = ans*a%n;
return ans;
}
void MakeInv(){
for (int i = 1; i < maxn; i++){
inv[i] = pow_mod(i, MOD - 2, MOD);
}
}
void MakeF(){
F[0] = 1;
for (int i = 1; i < maxn; i++){
F[i] = (F[i - 1] * i) % MOD;
}
}
int dfs(int u, int fa){
sz[u] = 1;
for (int i = 0; i < g[u].size(); i++){
int v = g[u][i];
if (v == fa) continue;
sz[u] += dfs(v, u);
}
return sz[u];
}
void solve()
{
dfs(1, -1);
mem(dp, 0);
dp[0][0] = 1;
for (int i = 1; i <= N; i++){
for (int j = 0; j <= K; j++){
dp[i][j] += (dp[i - 1][j] * (sz[i] - 1) % MOD)*inv[sz[i]] % MOD;
if (j > 0)
dp[i][j] += dp[i - 1][j - 1] * inv[sz[i]] % MOD;
dp[i][j] %= MOD;
}
}
}
int main()
{
//freopen("f:\\input.txt", "r", stdin);
MakeInv();
MakeF();
int T;
sfi(T);
for (int cas = 1; cas <= T; cas++){
sfii(N, K);
init();
for (int i = 0; i < N - 1; i++){
int a, b;
sfii(a, b);
g[a].push_back(b);
g[b].push_back(a);
}
solve();
LL ans = dp[N][K] * F[N] % MOD;
pf("Case #%d: %lld\n", cas, ans);
}
return 0;
}