(stl)Valid Pattern Lock

本文介绍了一种在Android设备上使用的图案解锁算法的有效性验证方法。通过定义图案锁的有效性规则,利用递归和排列算法生成所有可能的有效图案锁序列,并确保每一步绘制的图案都符合规定。该算法适用于3x3矩阵的图案解锁场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Valid Pattern Lock

Time Limit: 2 Seconds      Memory Limit: 65536 KB

Pattern lock security is generally used in Android handsets instead of a password. The pattern lock can be set by joining points on a 3 × 3 matrix in a chosen order. The points of the matrix are registered in a numbered order starting with 1 in the upper left corner and ending with 9 in the bottom right corner.

valid_pattern_lock

A valid pattern has the following properties:

  • A pattern can be represented using the sequence of points which it's touching for the first time (in the same order of drawing the pattern). And we call those points as active points.
  • For every two consecutive points A and B in the pattern representation, if the line segment connecting A and B passes through some other points, these points must be in the sequence also and comes before A and B, otherwise the pattern will be invalid.
  • In the pattern representation we don't mention the same point more than once, even if the pattern will touch this point again through another valid segment, and each segment in the pattern must be going from a point to another point which the pattern didn't touch before and it might go through some points which already appeared in the pattern.

Now you are given n active points, you need to find the number of valid pattern locks formed from those active points.

Input

There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

The first line contains an integer n (3 ≤ n ≤ 9), indicating the number of active points. The second line contains n distinct integers a1a2, … an (1 ≤ ai ≤ 9) which denotes the identifier of the active points.

Output

For each test case, print a line containing an integer m, indicating the number of valid pattern lock.

In the next m lines, each contains n integers, indicating an valid pattern lock sequence. The m sequences should be listed in lexicographical order.

Sample Input
1
3
1 2 3
Sample Output
4
1 2 3
2 1 3
2 3 1
3 2 1

分析:只需保证当前点与前一点之间没有未访问的点。next_permutation()生成排列。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <set>
#include <vector>
using namespace std;
const int maxn = 10005;
typedef long long LL;
int a[15], N;
vector<int>ans;
bool vis[15];
int bew[10][10];
void init()
{
	memset(bew, 0, sizeof(bew));
	bew[1][3] = bew[3][1] = 2;
	bew[1][7] = bew[7][1] = 4;
	bew[7][9] = bew[9][7] = 8;
	bew[9][3] = bew[3][9] = 6;
	bew[1][9] = bew[9][1] = bew[3][7] = bew[7][3] = 5;
	bew[4][6] = bew[6][4] = bew[2][8] = bew[8][2] = 5;
}
bool solve()
{
	vis[a[0]] = true;
	for (int i = 1; i < N; i++)
	{
		if (vis[bew[a[i]][a[i - 1]]] == true || bew[a[i]][a[i - 1]] == 0)
		{
			vis[a[i]] = true;
			continue;
		}
		else return false;
	}
	return true;
}
bool Judge()
{
	int x = (a[0] - 1) / 3;
	int y = (a[0] - 1) % 3;
	memset(vis, false, sizeof(vis));
	if (solve()) return true;
	else return false;
}
int main()
{
	//freopen("e:\\input.txt","r",stdin);
	int T;
	scanf("%d", &T);
	init();
	while (T--)
	{
		scanf("%d", &N);
		for (int i = 0; i<N; i++)
			scanf("%d", &a[i]);
		sort(a, a + N);
		int num = 0;
		ans.clear();
		do{
			if (Judge())
			{
				for (int i = 0; i<N; i++)   ans.push_back(a[i]);
				num++;
			}
		} while (next_permutation(a, a + N));

		printf("%d\n", num);
		int p = 0;
		for (int i = 0; i<num; i++, p += N)
		{
			for (int j = 0; j<N - 1; j++)
				printf("%d ", ans[p + j]);
			printf("%d\n", ans[p + N - 1]);
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值