ConcurrentHashMap、CopyOnWriteArrayList的简要总结:

本文详细介绍了ConcurrentHashMap的工作原理,包括其内部实现机制以及与Hashtable的区别。此外还探讨了Copy-On-Write机制及其在CopyOnWriteArrayList和自定义CopyOnWriteMap中的应用,并通过实例展示了适用于读多写少场景的解决方案。


1、public V get(Object key)不涉及到锁,也就是说获得对象时没有使用锁;

2、put、remove方法要使用锁,但并不一定有锁争用,原因在于ConcurrentHashMap将缓存的变量分到多个Segment,每个Segment上有一个锁,只要多个线程访问的不是一个Segment就没有锁争用,就没有堵塞,各线程用各自的锁,ConcurrentHashMap缺省情况下生成16个Segment,也就是允许16个线程并发的更新而尽量没有锁争用;

3、Iterator对象的使用,不一定是和其它更新线程同步,获得的对象可能是更新前的对象,ConcurrentHashMap允许一边更新、一边遍历,也就是说在Iterator对象遍历的时候,ConcurrentHashMap也可以进行remove,put操作,且遍历的数据会随着remove,put操作产出变化,所以希望遍历到当前全部数据的话,要么以ConcurrentHashMap变量为锁进行同步(synchronized该变量),要么使用CopiedIterator包装iterator,使其拷贝当前集合的全部数据,但是这样生成的iterator不可以进行remove操作。


Hashtable和ConcurrentHashMap的不同点:

1、Hashtable对get,put,remove都使用了同步操作,它的同步级别是正对Hashtable来进行同步的,也就是说如果有线程正在遍历集合,其他的线程就暂时不能使用该集合了,这样无疑就很容易对性能和吞吐量造成影响,从而形成单点。而ConcurrentHashMap则不同,它只对put,remove操作使用了同步操作,get操作并不影响,详情请看以上第1,2点,当前ConcurrentHashMap这样的做法对一些线程要求很严格的程序来说,还是有所欠缺的,对应这样的程序来说,如果不考虑性能和吞吐量问题的话,个人觉得使用Hashtable还是比较合适的;

2、Hashtable在使用iterator遍历的时候,如果其他线程,包括本线程对Hashtable进行了put,remove等更新操作的话,就会抛出ConcurrentModificationException异常,但如果使用ConcurrentHashMap的话,就不用考虑这方面的问题了,详情请看以上第3点;



Copy-On-Write简称COW,是一种用于程序设计中的优化策略。其基本思路是,从一开始大家都在共享同一个内容,当某个人想要修改这个内容的时候,才会真正把内容Copy出去形成一个新的内容然后再改,这是一种延时懒惰策略。从JDK1.5开始Java并发包里提供了两个使用CopyOnWrite机制实现的并发容器,它们是CopyOnWriteArrayList和CopyOnWriteArraySet。CopyOnWrite容器非常有用,可以在非常多的并发场景中使用到。

什么是CopyOnWrite容器

CopyOnWrite容器即写时复制的容器。通俗的理解是当我们往一个容器添加元素的时候,不直接往当前容器添加,而是先将当前容器进行Copy,复制出一个新的容器,然后新的容器里添加元素,添加完元素之后,再将原容器的引用指向新的容器。这样做的好处是我们可以对CopyOnWrite容器进行并发的读,而不需要加锁,因为当前容器不会添加任何元素。所以CopyOnWrite容器也是一种读写分离的思想,读和写不同的容器。

CopyOnWriteArrayList的实现原理

在使用CopyOnWriteArrayList之前,我们先阅读其源码了解下它是如何实现的。以下代码是向ArrayList里添加元素,可以发现在添加的时候是需要加锁的,否则多线程写的时候会Copy出N个副本出来。

01 public boolean add(T e) {
02     final ReentrantLock lock = this.lock;
03     lock.lock();
04     try {
05  
06         Object[] elements = getArray();
07  
08         int len = elements.length;
09         // 复制出新数组
10  
11         Object[] newElements = Arrays.copyOf(elements, len + 1);
12         // 把新元素添加到新数组里
13  
14         newElements[len] = e;
15         // 把原数组引用指向新数组
16  
17         setArray(newElements);
18  
19         return true;
20  
21     finally {
22  
23         lock.unlock();
24  
25     }
26  
27 }
28  
29 final void setArray(Object[] a) {
30     array = a;
31 }

读的时候不需要加锁,如果读的时候有多个线程正在向ArrayList添加数据,读还是会读到旧的数据,因为写的时候不会锁住旧的ArrayList。

1 public E get(int index) {
2     return get(getArray(), index);
3 }

JDK中并没有提供CopyOnWriteMap,我们可以参考CopyOnWriteArrayList来实现一个,基本代码如下:

01 import java.util.Collection;
02 import java.util.Map;
03 import java.util.Set;
04  
05 public class CopyOnWriteMap<K, V> implements Map<K, V>, Cloneable {
06     private volatile Map<K, V> internalMap;
07  
08     public CopyOnWriteMap() {
09         internalMap = new HashMap<K, V>();
10     }
11  
12     public V put(K key, V value) {
13  
14         synchronized (this) {
15             Map<K, V> newMap = new HashMap<K, V>(internalMap);
16             V val = newMap.put(key, value);
17             internalMap = newMap;
18             return val;
19         }
20     }
21  
22     public V get(Object key) {
23         return internalMap.get(key);
24     }
25  
26     public void putAll(Map<? extends K, ? extends V> newData) {
27         synchronized (this) {
28             Map<K, V> newMap = new HashMap<K, V>(internalMap);
29             newMap.putAll(newData);
30             internalMap = newMap;
31         }
32     }
33 }

实现很简单,只要了解了CopyOnWrite机制,我们可以实现各种CopyOnWrite容器,并且在不同的应用场景中使用。

CopyOnWrite的应用场景

CopyOnWrite并发容器用于读多写少的并发场景。比如白名单,黑名单,商品类目的访问和更新场景,假如我们有一个搜索网站,用户在这个网站的搜索框中,输入关键字搜索内容,但是某些关键字不允许被搜索。这些不能被搜索的关键字会被放在一个黑名单当中,黑名单每天晚上更新一次。当用户搜索时,会检查当前关键字在不在黑名单当中,如果在,则提示不能搜索。实现代码如下:

01 package com.ifeve.book;
02  
03 import java.util.Map;
04  
05 import com.ifeve.book.forkjoin.CopyOnWriteMap;
06  
07 /**
08  * 黑名单服务
09  *
10  * @author fangtengfei
11  *
12  */
13 public class BlackListServiceImpl {
14  
15     private static CopyOnWriteMap<String, Boolean> blackListMap = new CopyOnWriteMap<String, Boolean>(
16             1000);
17  
18     public static boolean isBlackList(String id) {
19         return blackListMap.get(id) == null false true;
20     }
21  
22     public static void addBlackList(String id) {
23         blackListMap.put(id, Boolean.TRUE);
24     }
25  
26     /**
27      * 批量添加黑名单
28      *
29      * @param ids
30      */
31     public static void addBlackList(Map<String,Boolean> ids) {
32         blackListMap.putAll(ids);
33     }
34  
35 }

代码很简单,但是使用CopyOnWriteMap需要注意两件事情:

1. 减少扩容开销。根据实际需要,初始化CopyOnWriteMap的大小,避免写时CopyOnWriteMap扩容的开销。

2. 使用批量添加。因为每次添加,容器每次都会进行复制,所以减少添加次数,可以减少容器的复制次数。如使用上面代码里的addBlackList方法。

CopyOnWrite的缺点

CopyOnWrite容器有很多优点,但是同时也存在两个问题,即内存占用问题和数据一致性问题。所以在开发的时候需要注意一下。

内存占用问题。因为CopyOnWrite的写时复制机制,所以在进行写操作的时候,内存里会同时驻扎两个对象的内存,旧的对象和新写入的对象(注意:在复制的时候只是复制容器里的引用,只是在写的时候会创建新对象添加到新容器里,而旧容器的对象还在使用,所以有两份对象内存)。如果这些对象占用的内存比较大,比如说200M左右,那么再写入100M数据进去,内存就会占用300M,那么这个时候很有可能造成频繁的Yong GC和Full GC。之前我们系统中使用了一个服务由于每晚使用CopyOnWrite机制更新大对象,造成了每晚15秒的Full GC,应用响应时间也随之变长。



Java并发包(java.util.concurrent)常用类及使用场景 1、locks包中的锁(如ReentrantLock等),提供更灵活的锁机制,替代 synchronized。 ● ReentrantLock 可重入锁,支持公平锁和非公平锁,可中断、可限时等待。 ● ReentrantReadWriteLock 读写分离锁,允许多个读线程同时访问,写线程独占资源。 ● StampedLock (Java 8+)支持乐观读锁,适用于读多写少场景,性能优于 ReentrantReadWriteLock。 ● Condition 替代 Object.wait()/notify(),实现更精细的线程等待/唤醒机制。 2、atomic包下的原子类:如AtomicInteger、AtomicLong、LongAdder等,原子类提供无锁线程安全操作,基于CAS(Compare and Swap)实现,适用于计数器、状态标志等场景。 3、提供了线程安全的集合类,支持高并发读写。 ● ConcurrentHashMap:使用节点锁的思想,即采用“CAS+synchronized”的机制来保证线程安全。 ● CopyOnWriteArrayList/CopyOnWriteArraySet:核心机制是写时复制(Copy-On-Write,简称 COW机制),读操作无锁,写操作复制新数组,适合读多写少的场景。 ● BlockingQueue(接口):实现类有ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue、SynchronousQueue。都是阻塞式队列,支持生产者-消费者模型。 ● ArrayBlockingQueue:基于数组的有界队列。 ● LinkedBlockingQueue:基于链表的无界队列(默认最大为 Integer.MAX_VALUE)。 ● PriorityBlockingQueue:支持优先级的无界队列。 ● SynchronousQueue:无缓冲队列,直接传递任务给消费者。 4、Executor线程池框架,管理线程的生命周期和任务调度。 ExecutorService(接口),实现有ThreadPoolExecutor、ScheduledThreadPoolExecutor,用于执行异步任务,支持定时/延迟任务。 Future/FutureTask,用于获取异步任务执行结果。 5、Executors线程池工具类,内部通过调用ThreadPoolExecutor构造函数来实现,通过该类提供的静态方法可以快速创建一些常用线程池。 ThreadPoolExecutor类是线程池类,可以通过ThreadPoolExecutor类手动创建线程池。 6、Fork/Join框架:是jdk7中新增的并行执行任务的框架,通过 递归任务拆分 和 工作窃取算法,充分利用多核处理器的计算能力。 ForkJoinPool是执行Fork/Join任务的线程池;ForkJoinTask是要执行的任务的基类,常用的有RecursiveAction(无返回值的任务)和RecursiveTask(有返回值的任务)。 7、CompletableFuture实现对多线程进行编排,CompletableFuture提供了非常强大的Future的扩展功能,可以帮助我们简化异步编程的复杂性,提供了函数式编程的能力。 8、AQS(AbstractQueuedSynchronizer抽象排队同步器)是用于构建锁和同步器的核心框架。几乎所有 Java 并发工具类(如 ReentrantLock、Semaphore、CountDownLatch 、CyclicBarrier 等)的底层实现都依赖于 AQS。它通过一个双向队列(CLH 变体)和状态变量,实现了线程的排队、阻塞与唤醒机制。 9、同步工具类(如Semaphore信号量、CountDownLatch(倒计时门闩)、CyclicBarrier循环屏障、Phaser(阶段器)、Exchanger(交换器)),协调多线程的执行顺序或状态。 ● Semaphore(信号量),用于控制资源访问并发数,可以用在限流等场景。 ● CountDownLatch(倒计时门闩)让主线程等待一组子线程完成任务(一次性)。用于并行任务完成后汇总结果(如多线程加载数据后启动系统)。 ● CyclicBarrier(循环屏障),用于一组线程相互等待,到达屏障后统一执行后续操作(可重复使用),例如分阶段数据处理后合并。 ● Phaser(阶段器):与CyclicBarrier类似,也是一种多线程同步工具,但是支持更灵活的栅栏操作,可以动态地注册和注销参与者,并可以控制各个参与者的到达和离开(复杂版CyclicBarrier)。 ● Exchanger(交换器):两个线程在特定点交换数据,例如生产者-消费者模式中的缓冲区交换。 生成思维导图
05-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值