Gradient Projection for Sparse Reconstruction Mário Figueiredo,

本文介绍了一种名为GPSR的梯度投影稀疏重建算法,该算法针对大规模欠定线性方程组求解稀疏解的问题,特别适用于压缩感知等领域。通过对测试案例的应用表明,GPSR相较于其他先进算法,在计算速度上表现更优,并且随着未知信号长度的增长,其优势更加明显。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

GPSR

     Gradient Projection  for Sparse  Reconstruction

 

 

   Mário Figueiredo,                               Robert D. Nowak,                                                Stephen J. Wright

   Institutode Telecomunicações           Electricaland Computer Engineering                   ComputerSciences Dept.

   InstitutoSuperior Técnico                  Universityof Wisconsin-Madison                        Universityof Wisconsin-Madison

   Lisboa,PORTUGAL                          Madison,WI, USA                                               Madison,WI, USA

 

 

Many problems in signal processing andstatistical inference are based on finding a sparse solution to an undeterminedlinear system of equations. 

BasisPursuit, the Least Absolute Shrinkage and Selection Operator (LASSO), wavelet-baseddeconvolution, and CompressedSensing are just a few well-known examples.

 

Computationally, the problem can be formulatedin different ways, most of them being convex optimization problems. Weconsidered a formulation in which a penalty term involving the scaled l1-normof the signal is added to a least-squares term, a problem that can bereformulated as a convex quadratic program with bound constraints. This problemhas a potentially extremely large number of variables (though only a smallfraction of them are away from their bounds at the solution) and the data thatdefines it can often not be stored explicitly. We found that a solver ofgradient projection type, using special line search and termination techniques,gave faster solutions on our test problems than other techniques that had beenproposed previously, including interior-point techniques.  A debiasing step based on theconjugate-gradient algorithm improves the results further.

 

 

Finalversion,  September 12, 2007.

To appear in the IEEE Journal of SelectedTopics in Signal Processing: Special Issue on Convex Optimization Methods forSignal Processing).

 

NEW!  Updated version (January 19, 2009) of theMATLAB code is available here: GPSR_6.0 

 

The figure below shows a test case of a signalwith 4096 elements only 160 of which are not zero, and which is beingreconstructed from projection on 1024 unit-norm random vectors in4096-dimensional space; this is, of course, a highly under-determinedproblem.  The true signal is shown at thetop, while the reconstructions obtained from the l1-regularizedformulation are shown in the second and third plots. Note that the locations ofthe spikes are reconstructed with high accuracy; their magnitudes areattenuated, but these can be corrected by applying our conjugate-gradientdebiasing approach. The lower part of the figure shows the minimum normsolution, which is not sparse and which bears little relation to the truesignal.


 

 

$Č

 

 

The figures below shows a comparison, in termsof computational speed, of GPSR versus three state-of-the-art solvers for thesame problem:

 

·        thel1-magic code, available here (from CalTech);

·        theSparseLab code, available here (from Stanford);

·        thenew l1_ls code (March 2007),available here (fromStanford);

·        thebound-optimization method (or iterative shrinkage/thresholding – IST),originally developed for wavelet-based deconvolution, described here.

 

The plots shows that our GPSR method is fasterand scales more favorably

 (w.r.t.n, the length of the unknown signal) than the competing techniques.

See the paper for details about theexperiments.

 

ČδČ

 

 

 

Funding Acknowledgment:

 

·        Thiswork was partially supported by the USA National Science Foundation (NSF),under grants CCF-0430504  and  CNS-0540147.

 

·        Thiswork was partially supported by the Portuguese Fundação para a Ciência e Tecnologia (FCT), under projectPOSC/EEA-CPS/61271/2004.

 

内容概要:论文提出了一种基于空间调制的能量高效分子通信方案(SM-MC),将传输符号分为空间符号和浓度符号。空间符号通过激活单个发射纳米机器人的索引来传输信息,浓度符号则采用传统的浓度移位键控(CSK)调制。相比现有的MIMO分子通信方案,SM-MC避免了链路间干扰,降低了检测复杂度并提高了性能。论文分析了SM-MC及其特例SSK-MC的符号错误率(SER),并通过仿真验证了其性能优于传统的MIMO-MC和SISO-MC方案。此外,论文还探讨了分子通信领域的挑战、优势及相关研究工作,强调了空间维度作为新的信息自由度的重要性,并提出了未来的研究方向和技术挑战。 适合人群:具备一定通信理论基础,特别是对纳米通信和分子通信感兴趣的科研人员、研究生和工程师。 使用场景及目标:①理解分子通信中空间调制的工作原理及其优势;②掌握SM-MC系统的具体实现细节,包括发射、接收、检测算法及性能分析;③对比不同分子通信方案(如MIMO-MC、SISO-MC、SSK-MC)的性能差异;④探索分子通信在纳米网络中的应用前景。 其他说明:论文不仅提供了详细的理论分析和仿真验证,还给出了具体的代码实现,帮助读者更好地理解和复现实验结果。此外,论文还讨论了分子通信领域的标准化进展,以及未来可能的研究方向,如混合调制方案、自适应调制技术和纳米机器协作协议等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值