LASSO, sparse group LASSO, elastic net

本文介绍了多种稀疏回归方法,包括LARS算法用于解决Lasso问题,Elastic Net处理多重共线性情况,Group Lasso实现组级别的稀疏性,Sparse Group Lasso进一步增强稀疏性,并提到了Adaptive Lasso等高级方法。此外还列举了一些相关的软件包。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LARS: efficient algorithm to solve lasso

Least angle regression


elastic net: in case of collinear dictionary atoms, it will pick collinear atoms together, or drop them together.

Regularization and variable selection via the elastic net

group lasso: in the extreme case, it behavors like lasso, however in a group manner, i.e. a group is either picked or dropped, and sparsity is obtained at the group level, but within each group, sparsity can't be guarantteed.

Model selection and estimation in regression with grouped variables


sparse group lasso: sparsity is gotten at both group level and within each group.

A note on the group lasso and a sparse group lasso

adaptive lasso:

The adaptive lasso and its oracle properties



Packages:

(1) LARS: l1-magic http://statweb.stanford.edu/~candes/l1magic/

(2) CRAN - Package glmnetPackage 'glmnet'

(3) SPAMS: http://spams-devel.gforge.inria.fr/

(4) SLEP: http://www.public.asu.edu/~jye02/Software/SLEP/

(5) SIRS: http://www-bcf.usc.edu/~jinchilv/publications/software/



http://blog.sciencenet.cn/blog-284987-741425.html 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值