Flow Problem
Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 7647 Accepted Submission(s): 3560
Problem Description
Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
Input
The first line of input contains an integer T, denoting the number of test cases.
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
Output
For each test cases, you should output the maximum flow from source 1 to sink N.
Sample Input
2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
Sample Output
Case 1: 1 Case 2: 2
Author
HyperHexagon
Source
第一道网络流题目
就是套模板
附上代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include<stack>
using namespace std;
typedef long long LL;
const int N=22;
const int INF=100000000;
struct edge
{
int to,cap,res;
};
vector<edge> g[N];
int used[N];
void add_edge(int from,int to,int cap)
{
edge tmp;
tmp.to=to;
tmp.cap=cap;
tmp.res=g[to].size();
g[from].push_back(tmp);
tmp.to=from;
tmp.cap=0;
tmp.res=g[from].size()-1;
g[to].push_back(tmp);
}
int dfs(int s,int t,int f) // 找一条增广路
{
if(s==t) return f;
used[s]=1;
for(int i=0;i<g[s].size();i++)
{
edge &e=g[s][i];
int d;
if(!used[e.to]&&e.cap>0) // e.cap>0 要满足,不然搜下去会为负值
{
d= dfs(e.to,t,min(f,e.cap));
if(d>0)
{
e.cap-=d;
g[e.to][e.res].cap+=d;
return d;
}
}
}
return 0;
}
void init()
{
for(int i=0;i<=N;i++)
g[i].clear();
}
LL max_flow(int s,int t)
{
LL ans=0;
for(;;)
{
memset(used,0,sizeof(used));
LL d=dfs(s,t,INF);
if(d==0)
return ans;
ans+=d;
}
}
int main()
{
int ca,v_sum,e_sum;
scanf("%d",&ca);
for(int kase=1;kase<=ca;kase++)
{
scanf("%d%d",&v_sum,&e_sum);
init();
for(int i=0;i<e_sum;i++)
{
int aa,bb,cc;
scanf("%d%d%d",&aa,&bb,&cc);
add_edge(aa,bb,cc);
}
printf("Case %d: ",kase);
printf("%lld\n",max_flow(1,v_sum));
}
return 0;
}
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <climits>
#include <vector>
#include <queue>
#include <cstdlib>
#include <string>
#include <set>
#include<stack>
using namespace std;
typedef long long LL;
const int N=22;
const int INF=100000000;
struct edge
{
int to,cap,res;
};
vector<edge> g[N];
int used[N];
void add_edge(int from,int to,int cap)
{
edge tmp;
tmp.to=to;
tmp.cap=cap;
tmp.res=g[to].size();
g[from].push_back(tmp);
tmp.to=from;
tmp.cap=0;
tmp.res=g[from].size()-1;
g[to].push_back(tmp);
}
int dfs(int s,int t,int f) // 找一条增广路
{
if(s==t) return f;
used[s]=1;
for(int i=0;i<g[s].size();i++)
{
edge &e=g[s][i];
int d;
if(!used[e.to]&&e.cap>0) // e.cap>0 要满足,不然搜下去会为负值
{
d= dfs(e.to,t,min(f,e.cap));
if(d>0)
{
e.cap-=d;
g[e.to][e.res].cap+=d;
return d;
}
}
}
return 0;
}
void init()
{
for(int i=0;i<=N;i++)
g[i].clear();
}
LL max_flow(int s,int t)
{
LL ans=0;
for(;;)
{
memset(used,0,sizeof(used));
LL d=dfs(s,t,INF);
if(d==0)
return ans;
ans+=d;
}
}
int main()
{
int ca,v_sum,e_sum;
scanf("%d",&ca);
for(int kase=1;kase<=ca;kase++)
{
scanf("%d%d",&v_sum,&e_sum);
init();
for(int i=0;i<e_sum;i++)
{
int aa,bb,cc;
scanf("%d%d%d",&aa,&bb,&cc);
add_edge(aa,bb,cc);
}
printf("Case %d: ",kase);
printf("%lld\n",max_flow(1,v_sum));
}
return 0;
}