离线。首先离散化。然后我们考虑加进一个数或减去一个数的改变量:假设数是x,即答案要加上(或减去)x*(小于x的数的个数) - (小于x的数的和) + (大于x的数的和) - x*(大于x的数的个数)。开两个树状数组分别维护数的个数和数的和就好。注意开long long。
/*************************************************************
Problem: 51nod 1394 差和问题
User: bestFy
Language: C++
Result: Accepted
Time: 812 ms
Memory: 6212 KB
Submit_Time: 2017/11/14 22:36:14
*************************************************************/
#include<cstdio>
#include<cstring>
#include<algorithm>
#define mid (l+r)/2
#define lc o<<1
#define rc o<<1|1
using namespace std;
typedef long long LL;
const int N = 100010;
int n, Q, m;
int a[N], b[N<<1];
int T[N<<1];
LL sum[N<<1], ans;
struct Question{
int type, x;
}q[N];
inline void updateT(int k, int v)
{
for (; k < N<<1; k += k&-k) T[k] += v;
}
inline int queryT(int k)
{
int ret = 0;
for (; k; k -= k&-k) ret += T[k];
return ret;
}
inline void updateSum(int k, LL v)
{
for (; k < N<<1; k += k&-k) sum[k] += v;
}
inline LL querySum(int k)
{
LL ret = 0;
for (; k; k -= k&-k) ret += sum[k];
return ret;
}
int main()
{
scanf("%d%d", &n, &Q);
for (int i = 1; i <= n; i ++){
scanf("%d", &a[i]);
b[i] = a[i];
} m = n;
for (int i = 1; i <= Q; i ++){
scanf("%d", &q[i].type);
if (q[i].type != 3){
scanf("%d", &q[i].x);
b[++ m] = q[i].x;
}
}
sort(b+1, b+1+m);
m = unique(b+1, b+1+m)-b-1;
for (int i = 1; i <= n; i ++){
a[i] = lower_bound(b+1, b+1+m, a[i]) - b;
updateT(a[i], 1); updateSum(a[i], b[a[i]]);
ans += 1LL*queryT(a[i]-1)*b[a[i]] - querySum(a[i]-1);
ans += (querySum(m)-querySum(a[i])) - 1LL*(queryT(m)-queryT(a[i]))*b[a[i]];
}
for (int i = 1; i <= Q; i ++){
if (q[i].type == 1){
int p = lower_bound(b+1, b+1+m, q[i].x) - b;
updateT(p, 1); updateSum(p, b[p]);
ans += 1LL*queryT(p-1)*b[p] - querySum(p-1);
ans += (querySum(m)-querySum(p)) - 1LL*(queryT(m)-queryT(p))*b[p];
} else if (q[i].type == 2){
int p = lower_bound(b+1, b+1+m, q[i].x) - b;
int x = queryT(p) - queryT(p-1);
if (!x){
puts("-1");
continue;
}
updateT(p, -1); updateSum(p, -b[p]);
ans -= 1LL*queryT(p-1)*b[p] - querySum(p-1);
ans -= (querySum(m)-querySum(p)) - 1LL*(queryT(m)-queryT(p))*b[p];
} else {
printf("%lld\n", ans);
}
}
return 0;
}