我们先看下面代码
1074 {
1075 mutex_.Unlock();
1076 // First look in the memtable, then in the immutable memtable (if any).
1077 LookupKey lkey(key, snapshot);
1078 if (mem->Get(lkey, value, &s)) {
1079 // Done
1080 } else if (imm != NULL && imm->Get(lkey, value, &s)) {
1081 // Done
1082 } else {
1083 s = current->Get(options, lkey, value, &stats);
1084 have_stat_update = true;
1085 }
1086 mutex_.Lock();
1087 }
从上面的代码可以看出,查询过程首先是在memTable不查找,如果找不到并且存在 immutable memtable,那么就在这里查找, 实在找不到,最后去ssTable中查找。
我们知道memTable 和immutable memTable都是使用跳表的结构实现,他们的查找就是在跳表中查找,这里就不介绍,我们主要来介绍下ssTable查找过程。
version_set.cc
Status Version::Get(const ReadOptions& options,
const LookupKey& k,
std::string* value,
GetStats* stats) {
Slice ikey = k.internal_key();
Slice user_key = k.user_key();
const Comparator* ucmp = vset_->icmp_.user_comparator();
Status s;
stats->seek_file = NULL;
stats->seek_file_level = -1;
FileMetaData* last_file_read = NULL;
int last_file_read_level = -1;
// We can search level-by-level since entries never hop across
// levels. Therefore we are guaranteed that if we find data
// in an smaller level, later levels are irrelevant.
std::vector<FileMetaData*> tmp;
FileMetaData* tmp2;
//从最底层开始,往上查找
for (int level = 0; level < config::kNumLevels; level++) {
size_t num_files = files_[level].size();
if (num_files == 0) continue;
// Get the list of files to search in this level
FileMetaData* const* files = &files_[level][0];
if (level == 0) {
// Level-0 files may overlap each other. Find all files that
// overlap user_key and process them in order from newest to oldest.
tmp.reserve(num_files);
for (uint32_t i = 0; i < num_files; i++) {
FileMetaData* f = files[i];
if (ucmp->Compare(user_key, f->smallest.user_key()) >= 0 &&
ucmp->Compare(user_key, f->largest.user_key()) <= 0) {
tmp.push_back(f);
}
}
if (tmp.empty()) continue;
std::sort(tmp.begin(), tmp.end(), NewestFirst);
files = &tmp[0];
num_files = tmp.size();
} else {
// Binary search to find earliest index whose largest key >= ikey.
uint32_t index = FindFile(vset_->icmp_, files_[level], ikey);
if (index >= num_files) {
files = NULL;
num_files = 0;
} else {
tmp2 = files[index];
if (ucmp->Compare(user_key, tmp2->smallest.user_key()) < 0) {
// All of "tmp2" is past any data for user_key
files = NULL;
num_files = 0;
} else {
files = &tmp2;
num_files = 1;
}
}
}
for (uint32_t i = 0; i < num_files; ++i) {
if (last_file_read != NULL && stats->seek_file == NULL) {
// We have had more than one seek for this read. Charge the 1st file.
stats->seek_file = last_file_read;
stats->seek_file_level = last_file_read_level;
}
FileMetaData* f = files[i];
last_file_read = f;
last_file_read_level = level;
Saver saver;
saver.state = kNotFound;
saver.ucmp = ucmp;
saver.user_key = user_key;
saver.value = value;
s = vset_->table_cache_->Get(options, f->number, f->file_size,
ikey, &saver, SaveValue);
if (!s.ok()) {
return s;
}
switch (saver.state) {
case kNotFound:
break; // Keep searching in other files
case kFound:
return s;
case kDeleted:
s = Status::NotFound(Slice()); // Use empty error message for speed
return s;
case kCorrupt:
s = Status::Corruption("corrupted key for ", user_key);
return s;
}
}
}
return Status::NotFound(Slice()); // Use an empty error message for speed
}
整个过程从level 0开始,逐层往上查找,找到就返回。 每层查找又分为查找候选文件和对候选文件内查找。查找候选文件除了level 0 是全部检测以后,其它都采用二分查找就可以。 文件内部查找调用
vset_->table_cache_->Get 实现。 最后对查到的结果进行类型判断(found, no found , corrupt)
最后我们再来看看这个table_cache中Get的实现
vset_->table_cache_->Get 实现。 最后对查到的结果进行类型判断(found, no found , corrupt)