Funky Numbers

本文介绍了一种高效算法,用于判断一个给定的整数是否可以表示为两个三角形数之和。通过采用二分搜索策略,该算法能够在较短时间内找到解决方案。

        

As you very well know, this year's funkiest numbers are so called triangular numbers (that is, integers that are representable as , where k is some positive integer), and the coolest numbers are those that are representable as a sum of two triangular numbers.

A well-known hipster Andrew adores everything funky and cool but unfortunately, he isn't good at maths. Given number n, help him define whether this number can be represented by a sum of two triangular numbers (not necessarily different)!

Input

The first input line contains an integer n (1 ≤ n ≤ 109).

Output

Print "YES" (without the quotes), if n can be represented as a sum of two triangular numbers, otherwise print "NO" (without the quotes).

Sample 1

InputcopyOutputcopy
256
YES

Sample 2

InputcopyOutputcopy
512
NO

Note

In the first sample number .

In the second sample number 512 can not be represented as a sum of two triangular numbers.

这个题目的 话首先读题要读清楚, 使用两组数字来表示, 如果正常双重循环的话会超时, 所以分开写, 一个循环一个二分去写, 然后数的话要注意, 是sqrt(n * 2)因为n * ( n + 1) / 2, 所以代码如下:

#include <iostream>
#include <cmath>

using namespace std;

const int N = 1e09;
typedef long long int ll;

int main() {
    ll n, l, r, flag = 0;

    cin >> n;
    ll h = sqrt(n * 2);
    for (int i = 1; i < h; i++) {
        ll l = i, r = h;
        while (l <= r) {
            ll mid = (l + r) / 2;
            if (mid * (mid + 1) / 2 + i * (i + 1) / 2 > n) r = mid - 1;
            else if (mid * (mid + 1) / 2 + i * (i + 1) / 2 < n) l = mid + 1;
            else {
                flag = 1;
                break;
            }
        } 
        if (flag) break;
    }
    if (flag) cout << "Yes" << endl;
    else cout << "No" << endl;
    return 0;
}

ok, 润了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值