测试数据连接:
链接:https://pan.baidu.com/s/1TBHvrfO3dKBO8xOaeFXS3Q
提取码:4zug
1. 需求 Reduce 端实现 JOIN
假如数据量巨大,两表的数据是以文件的形式存储在 HDFS 中, 需要用 MapReduce 程序来实现以下 SQL 查询运算
select a.id,a.date,b.name,b.category_id,b.price from t_order a left join t_product b on a.pid = b.id
商品表
id | pname | category_id | price |
---|---|---|---|
P0001 | 小米5 | 1000 | 2000 |
P0002 | 锤子T1 | 1000 | 3000 |
订单数据表
id | date | pid | amount |
---|---|---|---|
1001 | 20150710 | P0001 | 2 |
1002 | 20150710 | P0002 | 3 |
###2.2 实现步骤
通过将关联的条件作为map输出的key,将两表满足join条件的数据并携带数据所来源的文件信息,发往同一个reduce task,在reduce中进行数据的串联
Step 1: 定义 Mapper
package com.mjoin;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import java.io.IOException;
public class ReduceJoinMapper extends Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1. 判断文件来自哪里
FileSplit fileSplit = (FileSplit) context.getInputSplit();
String fileName = fileSplit.getPath().getName();
System.out.println("fileName为;" + fileName);
if(fileName.equals("product.txt")) {
//数据来自商品表
//2. 将k1 和 v2转为 k2 v2,写入上下文
String[] strs = value.toString().split(",");
String productId = strs[0];
context.write(new Text(productId), value);
} else {
//数据来自订单表
//2.将 k1 和 v1 转为 k2 v2,写入上下文
String[] strs = value.toString().split(",");
String productId = strs[2];
context.write(new Text(productId), value);
}
}
}
Step 2: 定义 Reducer
package com.mjoin;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class ReduceJoinReducer extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
//1.遍历集合,获取v3 (first + second)
String first = "";
String second = "";
for(Text text: values) {
if(text.toString().startsWith("p")) {
first = text.toString();
} else {
second += text.toString();
}
}
//2: 将k3 和 v3写入上下文
context.write(key, new Text(first + "\t" + second));
}
}
Step 3: 定义主类
package com.mjoin;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class ReduceJoinMain extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
//获取job
Job job = Job.getInstance(super.getConf(), "rejoin");
TextInputFormat.addInputPath(job, new Path("file:///C:\\xu\\xuexi\\hadoop\\test\\join\\input"));
//2.设置map类型及类型数据
job.setMapperClass(ReduceJoinMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
//3,4,5,6
//7 设置reducer类型和数据
job.setReducerClass(ReduceJoinReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//8 设置输出类型和输出路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:///C:\\xu\\xuexi\\hadoop\\test\\join\\output"));
//3:等待job任务结束
boolean bl = job.waitForCompletion(true);
return bl ? 0: 1;
}
public static void main(String[] args) throws Exception {
Configuration configuration = new Configuration();
//启动job任务
int run = ToolRunner.run(configuration, new ReduceJoinMain(), args);
System.exit(run);
}
}
测试结果:
2. 案例: Map端实现 JOIN
2.1 概述
适用于关联表中有小表的情形.
使用分布式缓存,可以将小表分发到所有的map节点,这样,map节点就可以在本地对自己所读到的大表数据进行join并输出最终结果,可以大大提高join操作的并发度,加快处理速度
2.2 实现步骤
先在mapper类中预先定义好小表,进行join
引入实际场景中的解决方案:一次加载数据库或者用
Step 1:定义Mapper
package com.mpjoin;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.FileSystemCounter;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.URI;
import java.util.HashMap;
public class MapJoinMapper extends Mapper<LongWritable, Text, Text, Text> {
private HashMap<String, String> map = new HashMap<>();
/**
* 1. 将分布式缓存的小表数据读取到本地map集合(只需要做一次)
*/
@Override
protected void setup(Context context) throws IOException, InterruptedException {
//1.获取分布式缓存文件列表
URI[] cacheFiles = context.getCacheFiles();
//2.获取指定的分石化缓存文件系统
FileSystem fileSystem = FileSystem.get(cacheFiles[0], context.getConfiguration());
//3.获取文件输入流
FSDataInputStream inputStream = fileSystem.open(new Path(cacheFiles[0]));
//4.读取文件内容并将数据存入map集合
//4.1 将字节流转为字符缓冲流 FSDataInputStream > BufferedReader
BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(inputStream));
//4.2 将读取小标文件中内容,以行为单位,并将读取数据存入map中
String line = null;
while((line = bufferedReader.readLine()) != null) {
String[] strs = line.split(",");
map.put(strs[0], line);
}
bufferedReader.close();
fileSystem.close();
}
//2. 对大表进行业务处理
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.从行文本中获取商品id, p0001, p0002 得到 k2
String[] strs = value.toString().split(",");
String productId = strs[2];
//2. 在Map集合中,将商品的id作为键,获取值(商品的行文本数据),将value和值拼接得到 v2
String proudctLine = map.get(productId);
String valueLine = proudctLine + "\t" + value.toString();
//3.将 k2 v2写入上下文中
context.write(new Text(productId), new Text((valueLine)));
}
}
Step 2:定义主类
package com.mpjoin;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import java.net.URI;
public class JobMain extends Configured implements Tool {
@Override
public int run(String[] strings) throws Exception {
//1.获取job对象
Job job = Job.getInstance(super.getConf(), "mapJoin");
job.addCacheFile(new URI("hdfs://node01:8020/cache_file/product.txt"));
//1.设置输入类和输入类型
job.setInputFormatClass(TextInputFormat.class);
TextInputFormat.addInputPath(job, new Path("file:///C:\\xu\\xuexi\\hadoop\\test\\join\\input2"));
//2.设置mapper类和数据类型
job.setMapperClass(MapJoinMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
//8设置输出类型和输出路径
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path("file:///C:\\xu\\xuexi\\hadoop\\test\\join\\output2"));
//等待吗任务结束
boolean bl = job.waitForCompletion(true);
return bl ? 0:1;
}
public static void main(String[] args) throws Exception {
Configuration configuration = new Configuration();
int run = ToolRunner.run(configuration, new JobMain(), args);
System.exit(run);
}
}