常用的优化步骤
在开始博客之前,还是同样的给一个大概的目录结构,实则即为一般MySQL的优化步骤
1、查看SQL的执行频率---------------使用show status命令
2、定位哪些需要优化的SQL------------通过慢查询记录+show processlist命令查看当前线程
3、分析为什么SQL执行效率低------------使用explain/desc命令分析
- 相关列简单解释:type、table、select_type...
4、对症下药采取优化措施-----------举例采取index进行优化
- 如何使用索引?
- 使用索引应该注意的事项
- 查看索引使用情况
主要参考资料:《深入浅出MySQL》,https://dev.mysql.com/doc/refman/8.0/en/statement-optimization.html
一、查看SQL执行频率
使用show [session|gobal] status命令了解SQL执行频率、线程缓存内的线程的数量、当前打开的连接的数量、获得的表的锁的次数等。
比如执行show status like 'Com_%'查看每个语句执行的次数即频率,其中Com_xxx中xxx表示就是语句,比如Com_select:执行select操作的次数。
1 mysql> use test;
2 Database changed
3 mysql> show status like 'Com_%';
4 +-----------------------------+-------+
5 | Variable_name | Value |
6 +-----------------------------+-------+
7 | Com_admin_commands | 0 |
8 | Com_assign_to_keycache | 0 |
9 | Com_alter_db | 0 |
10 | Com_alter_db_upgrade | 0 |
11 | Com_alter_event | 0 |
12 | Com_alter_function | 0 |
13 | Com_alter_instance | 0 |
14 | Com_alter_procedure | 0 |
15 | Com_alter_server | 0 |
16 | Com_alter_table | 0 |
17 | Com_alter_tablespace | 0 |
18 | Com_alter_user | 0 |
19 | Com_analyze | 0 |
20 | Com_begin | 0 |
21 | Com_binlog | 0 |
22 | Com_call_procedure | 0 |
23 | Com_change_db | 2 |
24 | Com_change_master | 0 |
25 | Com_change_repl_filter | 0 |
26 | Com_check | 0 |
27 | Com_checksum | 0 |
28 | Com_commit | 0 |
29 | Com_create_db | 0 |
30 | Com_create_event | 0 |
31 | Com_create_function | 0 |
32 | Com_create_index | 0 |
..............................
比如执行show status like 'slow_queries'查看慢查询次数(黑人问号??什么是慢查询呢?就是通过设置查询时间阈值long_query_time(0-10s)并打开开关show_query_log(1=OFF/0=ON),当超过这个阈值的查询都称之为慢查询,通常用来划分执行SQL效率)
mysql> show status like 'slow_queries';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Slow_queries | 0 |
+---------------+-------+
1 row in set
比如执行show status like 'uptime'查看服务工作时间(即运行时间):
mysql> show status like 'uptime';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Uptime | 21645 |
+---------------+-------+
1 row in set
比如执行show status like 'connections'查看MySQL连接数:
mysql> show status like 'connections';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Connections | 6 |
+---------------+-------+
1 row in set
通过show [session|gobal] status命令很清楚地看到哪些SQL执行效率不如人意,但是具体是怎么个不如意法,还得继续往下看,使用EXPLAIN命令分析具体的SQL语句
二、定位效率低的SQL
上面也提到过慢查询这个概念主要是用来划分效率低的SQL,但是慢查询是在整个查询结束后才记录的,所以光是靠慢查询日志是跟踪不了效率低的SQL。一般有两种方式定位效率低的SQL:
1、通过慢查询日志查看效率低的SQL语句,慢查询日志是通过show_query_log_file指定存储路径的,里面记录所有超过long_query_time的SQL语句(关于日志的查看,日后再一步研究学习),但是需要慢查询日志的产生是在查询结束后才有的。
2、通过show processlist命令查看当前MySQL进行的线程,可以看到线程的状态信息
mysql> show processlist;
+----+------+-----------------+------+---------+------+----------+------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+------+-----------------+------+---------+------+----------+------------------+
| 2 | root | localhost:58377 | NULL | Sleep | 2091 | | NULL |
| 3 | root | localhost:58382 | test | Sleep | 2083 | | NULL |
| 4 | root | localhost:58386 | test | Sleep | 2082 | | NULL |
| 5 | root | localhost:59092 | test | Query | 0 | starting | show processlist |
+----+------+-----------------+------+---------+------+----------+------------------+
4 rows in set
其中主要的是state字段,表示当前SQL语句线程的状态,如Sleeping 表示正在等待客户端发送新请求,Sending data把查询到的data结果发送给客户端等等,具体请看https://dev.mysql.com/doc/refman/8.0/en/general-thread-states.html
三、 查看分析效率低的SQL
MYSQL 5.6.3以前只能EXPLAIN SELECT; MYSQL5.6.3以后就可以EXPLAIN SELECT,UPDATE,DELETE,现在我们先创建一个user_table的表,之后分析select* from user where name=''语句
mysql> create table user(id int, name varchar(10),password varchar(32),primary key(id))engine=InnoDB;
Query OK, 0 rows affected
之后插入三条数据:
mysql> insert into user values(1,'Zhangsan',replace(UUID(),'-','')),(2,'Lisi',replace(UUID(),'-','')),(3,'Wangwu',replace(UUID(),'-',''));
Query OK, 3 rows affected
Records: 3 Duplicates: 0 Warnings: 0
mysql> select* from user;
+----+----------+----------------------------------+
| id | name | password |
+----+----------+----------------------------------+
| 1 | Zhangsan | 2d7284808e5111e8af74201a060059ce |
| 2 | Lisi | 2d73641c8e5111e8af74201a060059ce |
| 3 | Wangwu | 2d73670c8e5111e8af74201a060059ce |
+----+----------+----------------------------------+
3 rows in set
下面以分析select*from user where name='Lisi'语句为例:
mysql> explain select*from user where name='Lisi';
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | user | NULL | ALL | NULL | NULL | NULL | NULL | 3 | 33.33 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
1 row in set
下面讲解select_type等常见列的含义的:
(1)select_type:表示SELECT的类型,主要有:
- SIMPLE:简单表,没有表连接或者子查询
- PRIMARY:主查询,即最外城的查询
- UNION:UNION中的第二个或者后面的语句
- SUBQUERY:子查询中的第一个SELECT
(2)table:结果输出的表
(3)type:表示表的连接类型,性能由好到差为:
- system:常量表
- const:单表中最多有一行匹配,比如primary key,unique index
- eq_ref:多表连接中使用primary key,unique index
- ref:使用普通索引
- ref_or_null:与ref类似,但是包含了NULL查询
- index_merge:索引合并优化
- unique_subquery:in后面是一个查询主键字段的子查询
- index_subquery:in后面是非唯一索引字段的子查询
- range:单表中范围查看,使用like模糊查询
- index:对于后面每一行都通过查询索引得到数据
- all:表示全表查询
(3)possible_key:查询时可能使用的索引
(4)key:表示实际使用的索引
(5)key_len:索引字段的长度
(6)rows:查询时实际扫描的行数
(7)Extra:执行情况的说明和描述
(8)partitions:分区数目
(9)filtered:查询过滤的表占的百分比,比如这里查询的记录是name=Lisi的记录,占三条记录的33.3%
四、 关于索引的优化
1、使用索引优化的举例
上个例子我们看到到执行explain select*from user where name='Lisi',扫描了3行(全部行数)使用了全表搜索all。如果实际业务中name是经常用到查询的字段(是指经常跟在where后的字段,不是select后的字段)并且数据量很大的情况呢?这时候就需要索引了(索引经常用到where后面的字段比select后面的字段效果更好,或者说就是要使用在where后面的字段上)
增加name前缀索引(这里只是举例,并没有选择最合适的前缀):
mysql> create index index_name on user(name(2));
Query OK, 0 rows affected
Records: 0 Duplicates: 0 Warnings: 0
执行explain分析
mysql> explain select*from user where name = 'Lisi';
+----+-------------+-------+------------+------+---------------+------------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | user | NULL | ref | index_name | index_name | 9 | const | 1 | 100 | Using where |
+----+-------------+-------+------------+------+---------------+------------+---------+-------+------+----------+-------------+
1 row in set
可以看到type变为ref、rows降为1(实际上只要使用了索引都是1),filtered过滤百分比为100%,实际用到的索引为index_name。如果数据量很大的话使用索引就是很好的优化措施,对于如何选择索引,什么时候用索引,我做出了如下总结:
2、如何高效使用索引?
(1) 创建多列索引时,只要查询条件中用到最左边的列,索引一般都会被用到
我们创建一张没有索引的表user_1:
mysql> show create table
user_1;
+--------+--------------------------------------------------------------------------------------------------------------------------+
| Table | Create Table |
+--------+--------------------------------------------------------------------------------------------------------------------------+
| user_1 | CREATE TABLE `user_1` (
`id` int(11) DEFAULT NULL,
`name` varchar(10) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8 |
+--------+--------------------------------------------------------------------------------------------------------------------------+
1 row in set
之后同样插入数据:
mysql> select *from user_1;
+----+----------+
| id | name |
+----+----------+
| 1 | Zhangsan |
| 2 | Lisi |
+----+----------+
2 rows in set
创建多列索引index_id_name
mysql> create index index_id_name on user_1(id,name);
Query OK, 0 rows affected
Records: 0 Duplicates: 0 Warnings: 0
实验查询explain分析name与id
mysql> explain select * from user_1 where id=1;
+----+-------------+--------+------------+------+---------------+---------------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+--------+------------+------+---------------+---------------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | user_1 | NULL | ref | index_id_name | index_id_name | 5 | const | 1 | 100 | Using index |
+----+-------------+--------+------------+------+---------------+---------------+---------+-------+------+----------+-------------+
1 row in set
mysql> explain select * from user_1 where name='Lisi';
+----+-------------+--------+------------+-------+---------------+---------------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+--------+------------+-------+---------------+---------------+---------+------+------+----------+--------------------------+
| 1 | SIMPLE | user_1 | NULL | index | NULL | index_id_name | 38 | NULL | 2 | 50 | Using where; Using index |
+----+-------------+--------+------------+-------+---------------+---------------+---------+------+------+----------+--------------------------+
1 row in set
可以看到使用最左列id的时候,rows为1,并且Extra明确使用了index,key的值为id_name_index,type的值为ref,而where不用到id,而是name的话,rows的值为2。filtered为50%,虽然key是index_id_name,但是表明是索引(个人理解,应该不太准确)
(2) 使用like的查询,只有%不是第一个字符并且%后面是常量的情况下,索引才可能会被使用。
执行explain select *from user where name like ‘%Li’后type为ALL且key的值为NULL,执行explain select *from user where name like ‘Li%’后key值不为空为index_name。
mysql> explain select*from user where name like '%Li';
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | user | NULL | ALL | NULL | NULL | NULL | NULL | 3 | 33.33 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
1 row in set
mysql> explain select*from user where name like 'Li%';
+----+-------------+-------+------------+-------+---------------+------------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+-------+---------------+------------+---------+------+------+----------+-------------+
| 1 | SIMPLE | user | NULL | range | index_name | index_name | 9 | NULL | 1 | 100 | Using where |
+----+-------------+-------+------------+-------+---------------+------------+---------+------+------+----------+-------------+
1 row in set
(3) 如果对打的文本进行搜索,使用全文索引而不是用like ‘%...%’(只有MyISAM支持全文索引)。
(4) 如果列名是索引,使用column_name is null将使用索引。
mysql> explain select*from user where name is null;
+----+-------------+-------+------------+------+---------------+------------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | user | NULL | ref | index_name | index_name | 9 | const | 1 | 100 | Using where |
+----+-------------+-------+------------+------+---------------+------------+---------+-------+------+----------+-------------+
1 row in set
mysql> explain select*from user where password
is null;
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | user | NULL | ALL | NULL | NULL | NULL | NULL | 3 | 33.33 | Using where |
+----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+-------------+
1 row in set
3、哪些情况下即使有索引也用不到?
(1) MySQL使用MEMORY/HEAP引擎(使用的HASH索引),并且WHERE条件中不会使用”=”,in等进行索引列,那么不会用到索引(这是关于引擎部分特点,之后会介绍)。
(2) 用OR分隔开的条件,如果OR前面的条件中的列有索引,而后面的列没有索引,那么涉及到的列索引不会被使用。
执行命令show index from user可以看出password字段并没有使用任何索引,而id使用了两个索引,但是where id=1 or password='2d7284808e5111e8af74201a060059ce' 导致没有使用id列的primary索引与id_name_index索引
mysql> show index from user;
+-------+------------+---------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+-------+------------+---------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| user | 0 | PRIMARY | 1 | id | A | 3 | NULL | NULL | | BTREE | | |
| user | 1 | index_name | 1 | name | A | 3 | 2 | NULL | YES | BTREE | | |
| user | 1 | id_name_index | 1 | id | A | 3 | NULL | NULL | | BTREE | | |
| user | 1 | id_name_index | 2 | name | A | 3 | NULL | NULL | YES | BTREE | | |
+-------+------------+---------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
4 rows in set
mysql> explain select*from user where id=1 or password='2d7284808e5111e8af74201a060059ce';
+----+-------------+-------+------------+------+-----------------------+------+---------+------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+-------+------------+------+-----------------------+------+---------+------+------+----------+-------------+
| 1 | SIMPLE | user | NULL | ALL | PRIMARY,id_name_index | NULL | NULL | NULL | 3 | 55.56 | Using where |
+----+-------------+-------+------------+------+-----------------------+------+---------+------+------+----------+-------------+
1 row in set
(3) 不是用到复合索引中的第一列即最左边的列的话,索引就不起作用(上面已经介绍)。
(4) 如果like是以%开头的(上面已经介绍)
(5) 如果列类型是字符串,那么where条件中字符常量值不用’’引号引起来的话,那就不会失去索引效果,这是因为MySQL会把输入的常量值进行转换再使用索引。
select * from user_1 where name =250,其中name的索引为name_index,并且是varchar字符串类型,但是并没有将250用引号变成’250’,那么explain之后的ref仍然为NULL,rows为3
mysql> show index from user_1;
+--------+------------+---------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+--------+------------+---------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| user_1 | 1 | index_id_name | 1 | id | A | 2 | NULL | NULL | YES | BTREE | | |
| user_1 | 1 | index_id_name | 2 | name | A | 2 | NULL | NULL | YES | BTREE | | |
| user_1 | 1 | name_index | 1 | name | A | 3 | 5 | NULL | YES | BTREE | | |
+--------+------------+---------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
3 rows in set
mysql> explain select*from user_1 where name=250;
+----+-------------+--------+------------+-------+---------------+---------------+---------+------+------+----------+--------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+--------+------------+-------+---------------+---------------+---------+------+------+----------+--------------------------+
| 1 | SIMPLE | user_1 | NULL | index | name_index | index_id_name | 38 | NULL | 3 | 33.33 | Using where; Using index |
+----+-------------+--------+------------+-------+---------------+---------------+---------+------+------+----------+--------------------------+
1 row in set
mysql> explain select*from user_1 where name='250';
+----+-------------+--------+------------+------+---------------+------------+---------+-------+------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+--------+------------+------+---------------+------------+---------+-------+------+----------+-------------+
| 1 | SIMPLE | user_1 | NULL | ref | name_index | name_index | 18 | const | 1 | 100 | Using where |
+----+-------------+--------+------------+------+---------------+------------+---------+-------+------+----------+-------------+
1 row in set
4、查看索引的使用情况
执行show status like ‘Handler_read%’可以看到一个值Handler_read_key,它代表一行被索引值读的次数,如果值很低说明增加索引得到的性能改善不高,因为索引并不经常使用。
mysql> show status like 'Handler_read%' ;
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Handler_read_first | 3 |
| Handler_read_key | 5 |
| Handler_read_last | 0 |
| Handler_read_next | 0 |
| Handler_read_prev | 0 |
| Handler_read_rnd | 0 |
| Handler_read_rnd_next | 20 |
+-----------------------+-------+
7 rows in set
(1)Handler_read_first:索引中第一条被读的次数。如果较高,它表示服务器正执行大量全索引扫描;
(2)Handler_read_key:如果索引正在工作,这个值代表一个行被索引值读的次数,如果值越低,表示索引得到的性能改善不高,因为索引不经常使用。
(3)Handler_read_next :按照键顺序读下一行的请求数。如果你用范围约束或如果执行索引扫描来查询索引列,该值增加。
(4)Handler_read_prev:按照键顺序读前一行的请求数。该读方法主要用于优化ORDER BY ... DESC。
(5)Handler_read_rnd :根据固定位置读一行的请求数。如果你正执行大量查询并需要对结果进行排序该值较高。你可能使用了大量需要MySQL扫描整个表的查询或你的连接没有正确使用键。这个值较高,意味着运行效率低,应该建立索引来补救。
(6)Handler_read_rnd_next:在数据文件中读下一行的请求数。如果你正进行大量的表扫描,该值较高。通常说明你的表索引不正确或写入的查询没有利用索引。
注:以上6点来自于网络总结,其中比较重要的两个参数是Handler_read_key与Handler_read_rnd_next。
常用优化
前言
之前已经简单介绍了MySQL的优化步骤,那么接下来自然而是就是常用的SQL优化,比如inseer、group by等常用SQL的优化,会涉及SQL语句内部细节(这正是我缺乏的)。最后希望自己能记录完成的一套MySQL优化博文!
注:其中部分我并没有全部实验(并不代表是错的),这里只相当于记录下,接下来会慢慢补充!
参考资料:《深入浅出MySQL》(有需要PDF电子书的伙伴可以评论或者私信我)
1、大批量插入数据优化
(1)对于MyISAM存储引擎的表,可以使用:DISABLE KEYS 和 ENABLE KEYS 用来打开或者关闭 MyISAM 表非唯一索引的更新。
ALTER TABLE tbl_name DISABLE KEYS; loading the data ALTER TABLE tbl_name ENABLE KEYS;
(2)对于InnoDB引擎,有以下几种优化措施:
① 导入的数据按照主键的顺序保存:这是因为InnoDB引擎表示按照主键顺序保存的,如果能将插入的数据提前按照排序好自然能省去很多时间。
比如bulk_insert.txt文件是以表user主键的顺序存储的,导入的时间为15.23秒
mysql> load data infile 'mysql/bulk_insert.txt' into table user; Query OK, 126732 rows affected (15.23 sec) Records: 126732 Deleted: 0 Skipped: 0 Warnings: 0
没有按照主键排序的话,时间为:26.54秒
mysql> load data infile 'mysql/bulk_insert.txt' into table user; Query OK, 126732 rows affected (26.54 sec) Records: 126732 Deleted: 0 Skipped: 0 Warnings: 0
② 导入数据前执行SET UNIQUE_CHECKS=0,关闭唯一性校验,带导入之后再打开设置为1:校验会消耗时间,在数据量大的情况下需要考虑。
③ 导入前设置SET AUTOCOMMIT=0,关闭自动提交,导入后结束再设置为1:这是因为自动提交会消耗部分时间与资源,虽然消耗不是很大,但是在数据量大的情况下还是得考虑。
2、INSERT的优化
(1)尽量使用多个值表的 INSERT 语句,这种方式将大大缩减客户端与数据库之间的连接、关闭等消耗。(同一客户的情况下),即:
INSERT INTO tablename values(1,2),(1,3),(1,4)
实验:插入8条数据到user表中(使用navicat客户端工具)
insert into user values(1,'test',replace(uuid(),'-','')); insert into user values(2,'test',replace(uuid(),'-','')); insert into user values(3,'test',replace(uuid(),'-','')); insert into user values(4,'test',replace(uuid(),'-','')); insert into user values(5,'test',replace(uuid(),'-','')); insert into user values(6,'test',replace(uuid(),'-','')); insert into user values(7,'test',replace(uuid(),'-','')); insert into user values(8,'test',replace(uuid(),'-',''));
得到反馈:
[SQL] insert into user values(1,'test',replace(uuid(),'-','')); 受影响的行: 1 时间: 0.033s [SQL] insert into user values(2,'test',replace(uuid(),'-','')); 受影响的行: 1 时间: 0.034s [SQL] insert into user values(3,'test',replace(uuid(),'-','')); 受影响的行: 1 时间: 0.056s [SQL] insert into user values(4,'test',replace(uuid(),'-','')); 受影响的行: 1 时间: 0.008s [SQL] insert into user values(5,'test',replace(uuid(),'-','')); 受影响的行: 1 时间: 0.008s [SQL] insert into user values(6,'test',replace(uuid(),'-','')); 受影响的行: 1 时间: 0.024s [SQL] insert into user values(7,'test',replace(uuid(),'-','')); 受影响的行: 1 时间: 0.004s [SQL] insert into user values(8,'test',replace(uuid(),'-','')); 受影响的行: 1 时间: 0.004s
总共的时间为0.171秒,接下来使用多值表形式:
insert into user values (9,'test',replace(uuid(),'-','')), (10,'test',replace(uuid(),'-','')), (11,'test',replace(uuid(),'-','')), (12,'test',replace(uuid(),'-','')), (13,'test',replace(uuid(),'-','')), (14,'test',replace(uuid(),'-','')), (15,'test',replace(uuid(),'-','')), (16,'test',replace(uuid(),'-',''));
得到反馈:
[SQL] insert into user values (9,'test',replace(uuid(),'-','')), (10,'test',replace(uuid(),'-','')), (11,'test',replace(uuid(),'-','')), (12,'test',replace(uuid(),'-','')), (13,'test',replace(uuid(),'-','')), (14,'test',replace(uuid(),'-','')), (15,'test',replace(uuid(),'-','')), (16,'test',replace(uuid(),'-','')); 受影响的行: 8 时间: 0.038s
得到时间为0.038,这样一来可以很明显节约时间优化SQL
(2)如果在不同客户端插入很多行,可使用INSERT DELAYED语句得到更高的速度,DELLAYED含义是让INSERT语句马上执行,其实数据都被放在内存的队列中。并没有真正写入磁盘。LOW_PRIORITY刚好相反。
(3)将索引文件和数据文件分在不同的磁盘上存放(InnoDB引擎是在同一个表空间的)。
(4)如果批量插入,则可以增加bluk_insert_buffer_size变量值提供速度(只对MyISAM有用)
(5)当从一个文本文件装载一个表时,使用LOAD DATA INFILE,通常比INSERT语句快20倍。
3、GROUP BY的优化
在默认情况下,MySQL中的GROUP BY语句会对其后出现的字段进行默认排序(非主键情况),就好比我们使用ORDER BY col1,col2,col3...所以我们在后面跟上具有相同列(与GROUP BY后出现的col1,col2,col3...相同)ORDER BY子句并没有影响该SQL的实际执行性能。
那么就会有这样的情况出现,我们对查询到的结果是否已经排序不在乎时,可以使用ORDER BY NULL禁止排序达到优化目的。下面使用EXPLAIN命令分析SQL。
在user_1中执行select id, sum(money) form user_1 group by name时,会默认排序(注意group by后的column是非index才会体现group by的排序,如果是primary key,那之前说过了InnoDB默认是按照主键index排好序的)
mysql> select*from user_1; +----+----------+-------+ | id | name | money | +----+----------+-------+ | 1 | Zhangsan | 32 | | 2 | Lisi | 65 | | 3 | Wangwu | 44 | | 4 | Lijian | 100 | +----+----------+-------+ 4 rows in set
不禁止排序,即不使用ORDER BY NULL时:有明显的Using filesort。
当使用ORDER BY NULL禁止排序后,Using filesort不存在

4、ORDER BY 的优化
MySQL可以使用一个索引来满足ORDER BY 子句的排序,而不需要额外的排序,但是需要满足以下几个条件:
(1)WHERE 条件和OREDR BY 使用相同的索引:即key_part1与key_part2是复合索引,where中使用复合索引中的key_part1
SELECT*FROM user WHERE key_part1=1 ORDER BY key_part1 DESC, key_part2 DESC;
(2)而且ORDER BY顺序和索引顺序相同:
SELECT*FROM user ORDER BY key_part1, key_part2;
(3)并且要么都是升序要么都是降序:
SELECT*FROM user ORDER BY key_part1 DESC, key_part2 DESC;
但以下几种情况则不使用索引:
(1)ORDER BY中混合ASC和DESC:
SELECT*FROM user ORDER BY key_part1 DESC, key_part2 ASC;
(2)查询行的关键字与ORDER BY所使用的不相同,即WHERE 后的字段与ORDER BY 后的字段是不一样的
SELECT*FROM user WHERE key2 = ‘xxx’ ORDER BY key1;
(3)ORDER BY对不同的关键字使用,即ORDER BY后的关键字不相同
SELECT*FROM user ORDER BY key1, key2;
5、OR的优化
当MySQL使用OR查询时,如果要利用索引的话,必须每个条件列都使独立索引,而不是复合索引(多列索引),才能保证使用到查询的时候使用到索引。
比如我们新建一张用户信息表user_info
mysql> select*from user_info; +---------+--------+----------+-----------+ | user_id | idcard | name | address | +---------+--------+----------+-----------+ | 1 | 111111 | Zhangsan | Kunming | | 2 | 222222 | Lisi | Beijing | | 3 | 333333 | Wangwu | Shanghai | | 4 | 444444 | Lijian | Guangzhou | +---------+--------+----------+-----------+ 4 rows in set
之后创建ind_name_id(user_id, name)复合索引、id_index(id_index)独立索引,idcard主键索引三个索引。
mysql> show index from user_info; +-----------+------------+-------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment | +-----------+------------+-------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ | user_info | 0 | PRIMARY | 1 | idcard | A | 4 | NULL | NULL | | BTREE | | | | user_info | 1 | ind_name_id | 1 | user_id | A | 4 | NULL | NULL | | BTREE | | | | user_info | 1 | ind_name_id | 2 | name | A | 4 | NULL | NULL | YES | BTREE | | | | user_info | 1 | id_index | 1 | user_id | A | 4 | NULL | NULL | | BTREE | | | +-----------+------------+-------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+ 4 rows in set
测试一:OR连接两个有单独索引的字段,整个SQL查询才会用到索引(index_merge),并且我们知道OR实际上是把每个结果最后UNION一起的。
mysql> explain select*from user_info where user_id=1 or idcard='222222'; +----+-------------+-----------+------------+-------------+------------------------------+---------------------+---------+------+------+----------+----------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+-------------+------------------------------+---------------------+---------+------+------+----------+----------------------------------------------------+ | 1 | SIMPLE | user_info | NULL | index_merge | PRIMARY,ind_name_id,id_index | ind_name_id,PRIMARY | 4,62 | NULL | 2 | 100 | Using sort_union(ind_name_id,PRIMARY); Using where | +----+-------------+-----------+------------+-------------+------------------------------+---------------------+---------+------+------+----------+----------------------------------------------------+ 1 row in set
测试二:OR使用复合索引的字段name,与没有索引的address,整个SQL都是ALL全表扫描的
mysql> explain select*from user_info where name='Zhangsan' or address='Beijing'; +----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+ | 1 | SIMPLE | user_info | NULL | ALL | NULL | NULL | NULL | NULL | 4 | 43.75 | Using where | +----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+ 1 row in set
交换OR位置并且使用另外的复合索引的列,也是ALL全表扫描:
mysql> explain select*from user_info where address='Beijing' or user_id=1; +----+-------------+-----------+------------+------+----------------------+------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+----------------------+------+---------+------+------+----------+-------------+ | 1 | SIMPLE | user_info | NULL | ALL | ind_name_id,id_index | NULL | NULL | NULL | 4 | 43.75 | Using where | +----+-------------+-----------+------------+------+----------------------+------+---------+------+------+----------+-------------+ 1 row in set
6、优化嵌套查询
使用嵌套查询有时候可以使用更有效的JOIN连接代替,这是因为MySQL中不需要在内存中创建临时表完成SELECT子查询与主查询两部分查询工作。但是并不是所有的时候都成立,最好是在on关键字后面的列有索引的话,效果会更好!
比如在表major中major_id是有索引的:
select * from student u left join major m on u.major_id=m.major_id where m.major_id is null;
而通过嵌套查询时,在内存中创建临时表完成SELECT子查询与主查询两部分查询工作,会有一定的消耗
select * from student u where major_id not in (select major_id from major);
7、使用SQL提示
SQL提示(SQL HINT)是优化数据库的一个重要手段,就是往SQL语句中加入一些人为的提示来达到优化目的。下面是一些常用的SQL提示:
(1)USE INDEX:使用USE INDEX是希望MySQL去参考索引列表,就可以让MySQL不需要考虑其他可用索引,其实也就是possible_keys属性下参考的索引值
mysql> explain select* from user_info use index(id_index,ind_name_id) where user_id>0; +----+-------------+-----------+------------+------+----------------------+------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+----------------------+------+---------+------+------+----------+-------------+ | 1 | SIMPLE | user_info | NULL | ALL | ind_name_id,id_index | NULL | NULL | NULL | 4 | 100 | Using where | +----+-------------+-----------+------------+------+----------------------+------+---------+------+------+----------+-------------+ 1 row in set mysql> explain select* from user_info use index(id_index) where user_id>0; +----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+ | 1 | SIMPLE | user_info | NULL | ALL | id_index | NULL | NULL | NULL | 4 | 100 | Using where | +----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+ 1 row in set
(2)IGNORE INDEX忽略索引
我们使用user_id判断,用不到其他索引时,可以忽略索引。即与USE INDEX相反,从possible_keys中减去不需要的索引,但是实际环境中很少使用。
mysql> explain select* from user_info ignore index(primary,ind_name_id,id_index) where user_id>0; +----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+ | 1 | SIMPLE | user_info | NULL | ALL | NULL | NULL | NULL | NULL | 4 | 33.33 | Using where | +----+-------------+-----------+------------+------+---------------+------+---------+------+------+----------+-------------+ 1 row in set
(3)FORCE INDEX强制索引
比如where user_id > 0,但是user_id在表中都是大于0的,自然就会进行ALL全表搜索,但是使用FORCE INDEX虽然执行效率不是最高(where user_id > 0条件决定的)但MySQL还是使用索引。
mysql> explain select* from user_info where user_id>0; +----+-------------+-----------+------------+------+----------------------+------+---------+------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+------+----------------------+------+---------+------+------+----------+-------------+ | 1 | SIMPLE | user_info | NULL | ALL | ind_name_id,id_index | NULL | NULL | NULL | 4 | 100 | Using where | +----+-------------+-----------+------------+------+----------------------+------+---------+------+------+----------+-------------+ 1 row in set
之后强制使用独立索引id_index(user_id):
mysql> explain select* from user_info force index(id_index) where user_id>0; +----+-------------+-----------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-----------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+ | 1 | SIMPLE | user_info | NULL | range | id_index | id_index | 4 | NULL | 4 | 100 | Using index condition | +----+-------------+-----------+------------+-------+---------------+----------+---------+------+------+----------+-----------------------+ 1 row in set
总结
(1)很多时候数据库的性能是由于不合适(是指效率不高,可能会导致锁表等)的SQL语句造成,本篇博文只是介绍简单的SQL优化
(2)其中有些优化在真正开发中是用不到的,但是一旦出问题性能下降的时候需要去一一分析。
1529

被折叠的 条评论
为什么被折叠?



