关于app store链接mt=8

本文介绍了mt(meta-type)的有效值及其应用场景,包括不同内容类别间的区分;同时解释了ls(linkspecial)的作用,即在查询特定歌曲时如何直接进入试播页面,避免跳转到专辑页面。
mt 代表 meta-type,有效值如下:
1   Music
2   Podcasts
3   Audiobooks
4   TV Shows
5   Music Videos
6   Movies
7   iPod Games
8   Mobile Software Applications
9   Ringtones
10  iTunes U
11  E-Books
12  Desktop Apps
当链接进行查询时,如果没有定义id,就有可能出现不同类别的内容,但是名字相同,例如某专辑的名字和某个app的名字重合。这时mt就起作用了。
ls代表link special,当查询的类型为某首歌曲时,不定义ls,默认指向歌曲的专辑,定义后直接进入该歌曲并试播。
农业作物成熟度实例分割数据集 一、基础信息 • 数据集名称:农业作物成熟度实例分割数据集 • 图片数量: 训练集:563张图片 验证集:161张图片 测试集:80张图片 总计:804张图片 • 训练集:563张图片 • 验证集:161张图片 • 测试集:80张图片 • 总计:804张图片 • 分类类别: bfullyripened: b类作物完全成熟状态 bgreen: b类作物绿色未成熟状态 bhalfripened: b类作物半成熟状态 lfullyripened: l类作物完全成熟状态 lgreen: l类作物绿色未成熟状态 lhalfripened: l类作物半成熟状态 • bfullyripened: b类作物完全成熟状态 • bgreen: b类作物绿色未成熟状态 • bhalfripened: b类作物半成熟状态 • lfullyripened: l类作物完全成熟状态 • lgreen: l类作物绿色未成熟状态 • lhalfripened: l类作物半成熟状态 • 标注格式:YOLO格式,包含实例分割多边形点标注,适用于实例分割任务。 • 数据格式:图片来源于农业图像数据库,细节清晰,适用于模型训练。 二、适用场景 • 农业AI监测系统开发:数据集支持实例分割任务,帮助构建能够自动识别作物部分并分类成熟度的AI模型,辅助农民进行精准农业管理。 • 精准农业应用研发:集成至农业智能平台,提供实时作物状态识别功能,优化灌溉、施肥和收获时间。 • 学术研究与创新:支持农业科学与人工智能交叉领域的研究,助力发表高水平农业AI论文。 • 农业教育与培训:数据集可用于农业院校或培训机构,作为学生学习作物识别和成熟度评估的重要资源。 三、数据集优势 • 精准标注与多样性:每张图片均经过精确标注,确保实例分割边界准确,类别分类正确。涵盖两种作物类型(b和l)和三种成熟度状态(完全成熟、绿色未成熟、半成熟),具有高度多样性,提升模型泛化能力。 • 任务适配性强:标注兼容主流深度学习框架(如YOLO等),可直接加载使用,支持实例分割任务,并可扩展到其他计算机视觉任务。 • 农业价值突出:专注于作物成熟度检测,为智能农业、自动化收获和作物健康监测提供关键数据支持,具有重要的实际应用价值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值