数学建模——遗传算法解决TSP问题
1 遗传原理简介

2 数据及程序实现
2.1数据(与退火算法数据一致)
2.2 程序实现
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# 遗传算法——解决TSP问题
"""
Created on Tue Apr 21 11:08:34 2020
@author: andrew
"""
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import time
def coordinate_init(size):
# 产生坐标字典
coordinate_dict = {}
coordinate_dict[0] = (-size, 0) # 起点是(-size,0)
up=1
for i in range(1, size + 1): # 顺序标号随机坐标
x=np.random.uniform(-size,size)
if np.random.randint(0,2)==up:
y=np.sqrt(size**2-x**2)
else:
y=-np.sqrt(size**2-x**2)
coordinate_dict[i]=(x,y)
coordinate_dict[size + 1] = (-size, 0) # 终点是(-size,0),构成一个圆
return coordinate_dict
def create_init_dict(filename):
# 数据加载——字典方式
data = pd.read_csv(filename,names=['index','lat','lon'])
data_dict = {}
for i in range(len(data)):
data_dict[i] = (data.iloc[i]['lon'],data.iloc[i]['lat'])
return data_dict
def distance_matrix(coordinate_dict, size): # 生成距离矩阵
d = np.zeros((size + 2, size + 2))
for i in range(size + 1):
for j in range(size + 1):
if (i == j):
continue
if (d[i][j] != 0):
continue
x1 = coordinate_dict[i][0]
y1 = coordinate_dict[i][1]
x2 = coordinate_dict[j][0]
y2 = coordinate_dict[j][1]
distance = np.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)
if (i == 0):
d[i][j] = d[size + 1][j] = d[j][i] = d[j][size + 1] = distance
else:
d[i][j] = d[j][i] = distance
return d
def path_length(d_matrix, path_list, size): # 计算路径长度
length = 0
for i in range(size + 1):
length += d_matrix[path_list[i]][path_list[i + 1]]
return length
def shuffle(my_list):# 起点和终点不能打乱
#
temp_list = my_list[1:-1]
np.random.shuffle(temp_list)
shuffle_list = my_list[:1]+temp_list+my_list[-1:]
return shuffle_list
def product_len_probability(my_list,d_matrix,size,p_num):
# 概率的计算 基因/轮盘/随机筛选 这里用到的是轮盘筛选
len_list=[]
pro_list=[]
path_len_pro=[]
for path in my_list:
len_list.append(path_length(d,path,size))
# 取距离最大最小值
max_len= max(len_list)+1e-10
gen_best_length=min(len_list)
gen_best_length_index=len_list.index(gen_best_length)
# 路径越长选择概率低,越短选择概率高 计算概率值 返回
mask_list=np.ones(p_num)*max_len-np.array(len_list)
sum_len=np.sum(mask_list)
for i in range(p_num):
if(i==0):
pro_list.append(mask_list[i]/sum_len)
elif(i==p_num-1):
pro_list.append(1)
else:
pro_list.append(pro_list[i-1]+mask_list[i]/sum_len)
for i in range(p_num):
path_len_pro.append([my_list[i],len_list[i],pro_list[i]])
return my_list[gen_best_length_index],gen_best_length,path_len_pro # 最短路径 每个路径长与最短距离长度作比值
def choose_cross(population,p_num):
# 交配
jump=np.random.random()
if jump<population[0][2]:
return 0
low=1
high=p_num
mid=int((low+high)/2)
#二分搜索
while(low<high):
if jump>population[mid][2]:
low=mid
mid=int((low+high)/2)
elif jump<population[mid-1][2]:
high=mid
mid = int((low + high) / 2)
else:
return mid
def veriation(my_list,size):
#变异
ver_1=np.random.randint(1,size+1)
ver_2=np.random.randint(1,size+1)
while ver_2==ver_1:#直到ver_2与ver_1不同 相同则交换
ver_2 = np.random.randint(1, size+1)
my_list[ver_1],my_list[ver_2]=my_list[ver_2],my_list[ver_1]
return my_list
if __name__=="__main__":
data = create_init_dict('verify_order_position_10.csv')
print(data)
start = time.time()
p_num = 100 # 种群个体数量
gen = 2000 # 进化代数
pm = 0.1 # 变异率
# coordinate_dict_1=coordinate_init(size)
coordinate_dict = create_init_dict('verify_order_position_10.csv') # 数据加载
size = len(coordinate_dict)-2 # 只对中间数据处理
print('--',coordinate_dict)
print(size)
d = distance_matrix(coordinate_dict,size) # 算出距离矩阵
# print(coordinate_dict)
path_list=list(range(size+2)) # 初始化路径
print(path_list)
population = [0]*p_num # 初始化种群矩阵
#建立初始种群
for i in range(p_num):
population[i] = shuffle(path_list) # 种族基因
# p_num 种群个体数量 population种族基因 d距离矩阵 size
gen_best,gen_best_length,population=product_len_probability(population,d,size,p_num) # 轮盘筛选
# print(population)#这个列表的每一项中有三项,第一项是路径,第二项是长度,第三项是使用时转盘的概率
son_list=[0]*p_num
best_path=gen_best#最好路径初始化
best_path_length=gen_best_length#最好路径长度初始化
every_gen_best=[]
every_gen_best.append(gen_best_length)
# 遗传过程
for i in range(gen):#迭代gen代
son_num=0
while son_num<p_num:#产生p_num数量子代,杂交与变异
father_index = choose_cross(population, p_num)
mother_index = choose_cross(population, p_num)
father=population[father_index][0]
mother=population[mother_index][0]
son1=father.copy()
son2=mother.copy()
prduct_set=np.random.randint(1,p_num+1)
father_cross_set=set(father[1:prduct_set])
mother_cross_set=set(mother[1:prduct_set])
cross_complete=1
for j in range(1,size+1):
if son1[j] in mother_cross_set:
son1[j]=mother[cross_complete]
cross_complete+=1
if cross_complete>prduct_set:
break
if np.random.random()<pm:#变异
son1=veriation(son1,size)
son_list[son_num]=son1
son_num+=1
if son_num==p_num: break
cross_complete=1
for j in range(1,size+1):
if son2[j] in father_cross_set:
son2[j]=father[cross_complete]
cross_complete+=1
if cross_complete>prduct_set:
break
if np.random.random()<pm:#变异
son2=veriation(son2,size)
son_list[son_num]=son2
son_num+=1
gen_best, gen_best_length,population=product_len_probability(son_list,d,size,p_num)
if(gen_best_length<best_path_length):
best_path=gen_best
best_path_length=gen_best_length
every_gen_best.append(gen_best_length)
x=[]
y=[]
for point in best_path:
x.append(coordinate_dict[point][0])
y.append(coordinate_dict[point][1])
print(gen_best)#最后一代最优路径
print(gen_best_length)#最后一代最优路径长度
print(best_path)#史上最优路径
print(best_path_length)#史上最优路径长度
plt.figure(1)
plt.subplot(211)
plt.plot(every_gen_best)
plt.subplot(212)
plt.scatter(x,y)
plt.plot(x,y)
plt.grid()
plt.show()
程序结果


遗传算法求解TSP
1万+

被折叠的 条评论
为什么被折叠?



